Unsymmetrical nonlinear bending problem of circular thin plate with variable thickness

2005 ◽  
Vol 26 (4) ◽  
pp. 423-430
Author(s):  
Wang Xin-zhi ◽  
Zhao Yong-gang ◽  
Ju Xu ◽  
Zhao Yan-ying ◽  
Yeh Kai-yuan
Author(s):  
Noah H. Schiller ◽  
Sz-Chin Steven Lin ◽  
Randolph H. Cabell ◽  
Tony Jun Huang

This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structure-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.


Measurement ◽  
2021 ◽  
pp. 109784
Author(s):  
Yufang Bai ◽  
Jie Zeng ◽  
Jiwei Huang ◽  
Zhenfeng Yan ◽  
Yaxing Wu ◽  
...  

2007 ◽  
Vol 345-346 ◽  
pp. 1581-1584
Author(s):  
Sang Woo Lee ◽  
Dae Young Shin ◽  
Kyoung Jin Chun

The safety valve has been designed to protect high pressure vessels. A fracture plate made of a circular thin plate is located within the safety valve. The circular thin plate has an outlet for fluid release and to help decrease the pressure. As such, fracture of the circular thin plate can occur at the appointed pressure. In this study, design variables of the safety valve were used to control fracture pressure so that it was easy to apply in the development of a new model of a safety valve. Design variables were fluid diameter of the safety valve, thickness of the fracture plate, filet radius of the clamping bolt, fracture pressure, and clamped torque of the clamping bolt. Design variables were selected, since the fracture experiment indicated that these variables might play a critical role in the fracture of the circular thin plate. Fracture pressure was calculated by the finite element analysis method and analyzed to affect the design variables on the fracture pressure. Using regression analysis, main design variables such as the fluid diameter, the thickness and the fillet were selected and the relationships of the variables were expressed by a regression equation. Furthermore, finite element analysis method and the regression equation were verified comparing with the experiment result.


Sign in / Sign up

Export Citation Format

Share Document