Surface appearance of precast concrete elements for building

1985 ◽  
Vol 18 (5) ◽  
pp. 393-398
2016 ◽  
Vol 75 (6) ◽  
pp. 363-369 ◽  
Author(s):  
Martin Mowitz ◽  
Erik Zimerson ◽  
Inese Hauksson ◽  
Ann Pontén

2016 ◽  
Vol 9 (3) ◽  
pp. 414-434
Author(s):  
J. D. Ditz ◽  
M. K. EL Debs ◽  
G. H. Siqueira

ABSTRACT This research aims to analyze the compressive stress transfer between precast concrete elements using cement mortar pads modified with polypropylene fibers, styrene-butadiene latex and heat-expanded vermiculite. The stress transfer analyses are performed interleaving a cementbearing pad between two concrete blocks, subjecting the entire specimen to different compressive load tests. The parameters analyzed in the tests are: surface roughness (using bosses on the bonded phase of different thicknesses), compressive strength with monotonic and cyclic loadings. The main results obtained in this study are: a) the presence of pad increased the strength in 24% for thicknesses of imperfections of 0.5 mm and approximately 12% for smooth faces blocks; b) gain of effectiveness of the bearing pad when the concrete strength was reduced; c) for cyclic loading, the bearing pad increased in 48% the connections strength.


2010 ◽  
Vol 113-116 ◽  
pp. 1013-1016 ◽  
Author(s):  
Zhi Min He ◽  
You Jun Xie ◽  
Guang Cheng Long ◽  
Jun Zhe Liu

In precast concrete elements manufacturing, steam-cured concrete incorporating 30% fly ash encountered the problem of a too low demoulding compressive strength. To resolve it, this paper developed a new steam-cured concrete (AFSC) incorporating fly ash and a chemical activator. Experiments were conducted to investigate the mechanical properties of AFSC. The corresponding mechanism was also discussed by testing the microstructure of concrete. Results indicate that the demoulding compressive strength of AFSC can meet production requirements, and compressive and flexure strength of AFSC at later ages increase well. Compared with that of ordinary steam-cured concrete, AFSC has a higher tensile strength, and the capability of AFSC to resist cracks is enhanced remarkably. At an early age, addition of the chemical activator can distinctly accelerate the extent of hydration of the fly ash cement systems, and thus the microstructure of concrete becomes denser.


2016 ◽  
Vol 691 ◽  
pp. 376-387 ◽  
Author(s):  
Ivan Hollý ◽  
Ivan Harvan

The structural integrity of precast concrete structures depends mainly on the connections between the precast structural elements. The purpose of a connection is to transfer loads, restrain movement, and/or to provide stability to a component or an entire structure. Therefore, the design of connections is one of the most important aspects in the design of precast concrete structures. All connections should design with valid codes. Every precasters have developed connection details over the years that suit their particular production and erection preferences. It is common, that the structural engineer to show loads and connection locations and allow the successful manufacturer’s engineering department to provide the final design and details of the connections.


Sign in / Sign up

Export Citation Format

Share Document