Uniform discrete random-variable generator

1973 ◽  
Vol 11 (3) ◽  
pp. 362-364 ◽  
Author(s):  
P. A. Parker ◽  
R. N. Scott

Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 543-549
Author(s):  
Buket Simsek

The aim of this present paper is to establish and study generating function associated with a characteristic function for the Bernstein polynomials. By this function, we derive many identities, relations and formulas relevant to moments of discrete random variable for the Bernstein polynomials (binomial distribution), Bernoulli numbers of negative order, Euler numbers of negative order and the Stirling numbers.



Author(s):  
Lacramioara Balan ◽  
Rajesh Paleti

Traditional crash databases that record police-reported injury severity data are prone to misclassification errors. Ignoring these errors in discrete ordered response models used for analyzing injury severity can lead to biased and inconsistent parameter estimates. In this study, a mixed generalized ordered response (MGOR) model that quantifies misclassification rates in the injury severity variable and adjusts the bias in parameter estimates associated with misclassification was developed. The proposed model does this by considering the observed injury severity outcome as a realization from a discrete random variable that depends on true latent injury severity that is unobservable to the analyst. The model was used to analyze misclassification rates in police-reported injury severity in the 2014 General Estimates System (GES) data. The model found that only 68.23% and 62.75% of possible and non-incapacitating injuries were correctly recorded in the GES data. Moreover, comparative analysis with the MGOR model that ignores misclassification not only has lower data fit but also considerable bias in both the parameter and elasticity estimates. The model developed in this study can be used to analyze misclassification errors in ordinal response variables in other empirical contexts.



2018 ◽  
Vol 10 (03) ◽  
pp. 1850030
Author(s):  
N. K. Sudev ◽  
K. P. Chithra ◽  
K. A. Germina ◽  
S. Satheesh ◽  
Johan Kok

Coloring the vertices of a graph [Formula: see text] according to certain conditions can be considered as a random experiment and a discrete random variable [Formula: see text] can be defined as the number of vertices having a particular color in the proper coloring of [Formula: see text]. The concepts of mean and variance, two important statistical measures, have also been introduced to the theory of graph coloring and determined the values of these parameters for a number of standard graphs. In this paper, we discuss the coloring parameters of the Mycielskian of certain standard graphs.



2020 ◽  
Vol 07 (01) ◽  
pp. 2050009
Author(s):  
Francesco Strati ◽  
Luca G. Trussoni

In this paper, we shall propose a Monte Carlo simulation technique applied to a G2++ model: even when the number of simulated paths is small, our technique allows to find a precise simulated deflator. In particular, we shall study the transition law of the discrete random variable :[Formula: see text] in the time span [Formula: see text] conditional on the observation at time [Formula: see text], and we apply it in a recursive way to build the different paths of the simulation. We shall apply the proposed technique to the insurance industry, and in particular to the issue of pricing insurance contracts with embedded options and guarantees.



1974 ◽  
Vol 11 (1) ◽  
pp. 43-52 ◽  
Author(s):  
V. R. R. Uppuluri ◽  
W. J. Blot

A discrete random variable describing the number of comparisons made in a sequence of comparisons between two opponents which terminates as soon as one opponent wins m comparisons is studied. By equating two different expressions for the mean of the variable, a closed form for the incomplete beta function with equal arguments is obtained. This expression is used in deriving asymptotic (m-large) expressions for the mean and variance. The standardized variate is shown to converge to the Gaussian distribution as m→ ∞. A result corresponding to the DeMoivre-Laplace limit theorem is proved. Finally applications are made to the genetic code problem, to Banach's Match Box Problem, and to the World Series of baseball.



Author(s):  
YUGE DONG ◽  
AINAN WANG

When fuzzy information is taken into consideration in design, it is difficult to analyze the reliability of machine parts because we usually must deal with random information and fuzzy information simultaneously. Therefore, in order to make it easy to analyze fuzzy reliability, this paper proposes the transformation between discrete fuzzy random variable and discrete random variable based on a fuzzy reliability analysis when one of the stress and strength is a discrete fuzzy variable and the other is a discrete random variable. The transformation idea put forwards in this paper can be extended to continuous case, and can also be used in the fuzzy reliability analysis of repairable system.





Sign in / Sign up

Export Citation Format

Share Document