frequency function
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2272
Author(s):  
Jose C. Merchuk ◽  
Francisco García-Camacho ◽  
Lorenzo López-Rosales

A novel mechanistic model of COVID-19 spread is presented. The pool of infected individuals is not homogeneously mixed but is viewed as a passage into which individuals enter upon the contagion, through which they pass (in the manner of “plug flow”) and exit at their recovery points within a fixed time. Our novel concept of infection unit is defined. The model separately considers various population pools: two of symptomatic and asymptomatic infected patients; three different pools of recovered individuals; of assisted hospitalized patients; of the quarantined; and of those who die from COVID-19. Transmission of this disease is described by an infection rate function, modulated by an encounter frequency function. This definition makes redundant the addition of a separate pool for the exposed, as done in several other models. Simulations are presented. The effects of social restrictions and of quarantine policies on pandemic spread are demonstrated. The model differs conceptually from others of the kind in the description of the transmission dynamics of the disease. A set of experimental data is used to calibrate our model, which predicts the dynamic behavior of each of the defined pools during pandemic spread.


2021 ◽  
Vol 40 (2) ◽  
pp. 199-209
Author(s):  
I.C. Onyechere ◽  
U.C. Anya ◽  
O.M. Ibearugbulem ◽  
A.U. Igbojiaku ◽  
E.O. Ihemegbulem ◽  
...  

This study applied polynomial expressions as displacement and shear deformation functions in the free-vibration study of thick and moderately thick isotropic rectangular plates. Rectangular plates with two different edge conditions investigated in this work are: one with simple supports at three of its edges and with no support at the other edge denoted with the acronym (SSFS) and a rectangular plate with simple supports at opposite edges while the other opposite edges has a fixed support at one edge and no support at the other edge, this is denoted with the acronym (CSFS). The total potential energy of the plate was derived using the general theory of elasticity. The general governing equation of the plate was derived by minimizing the total potential energy equation of the plate. Edge conditions of the SSFS and CSFS plates were met and substituted into the general governing equation to obtain a linear expression which was solved to generate fundamental natural frequency function for the plates with various span-depth proportion (m/t) and planar dimensions proportion (n/m). The results obtained from this research were found to agree favourably with the results of similar problems in the literature upon comparison.


Author(s):  
Achmad Mauludiyanto ◽  
Gamantyo Hendrantoro ◽  
Muhammad Fachry Nova

The Wireless Body Area Network (WBAN) refers to a communication network between sensors placed on the inside, on the surface, or around the body wirelessly. WBAN system cannot be separated from body tissues. Body tissues also have electrical properties depending on frequency. Therefore, body tissue can affect the phenomena occurring in radio wave propagation in the WBAN channel. One of the phenomena is attenuation. This study investigates the impacts of body tissue on the WBAN channel and the effects of frequency on the attenuation of body tissue in the WBAN channel. The measurement of magnitude response was carried out with the human body as the measurement object by utilizing the S21 parameter measurement with a vector network analyzer. In NLOS conditions, a human body was located between two coplanar Vivaldi antenna. Measurements were conducted on the head, chest, and abdomen. The frequency used was in the range of 2 GHz to 6 GHz. The body tissue attenuation was obtained by finding the difference between the magnitude measurement response on the LOS and NLOS conditions. The attenuation data were analyzed using statistical and numerical analysis to determine the effect of frequency on the attenuation of the human body tissues. Based on the analysis results, it was identified that the frequency affected the human body tissue attenuation. The enhancement attenuation of the human body tissues occurred when the frequency was higher. Moreover, there was a significant difference in the body tissue attenuation in different parts of the body.Keywords: attenuation, body tissues, s-parameters, wireless body area network.


2021 ◽  
Vol 3 (2) ◽  
pp. 59-62
Author(s):  
Amalia Solichati Rizqi

Background: Pain has become a separate complaint or disease, not only as a means of protecting the body or a symptom of other diseases. With increasing age, a person will experience a decrease in physiological functions that can affect the system in the body. Diadynamic currents are part of electrecal stimulation which has a low frequency function to reduce pain.Methods:This is an experimental research with a quantitative approach. The sampling technique used nonprobability sampling based on the inclusion and exclusion criteria. The data analysis used was non-parametric statistics, namely by using the Wilcoxon signed rank test.Results: Based on the result of the Wilcoxon test showed that the value. Sig. is 0.000, which is less than 0.05. By giving a diadynamic current, the pain felt by someone will be reduced.Conclusion: diadynamic currents can be used to reduce pain


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Ryuzo Horiguchi ◽  
Yoshiro Oda ◽  
Keito Sato ◽  
Hiroto Kozuka ◽  
Takao Yamaguchi

A simple method for determining viscoelasticity over a wide frequency range using the frequency response function (FRF) mobility obtained by the center impedance method is presented. As user data comprise the FRF between the velocity of the excitation rod and excitation force, it is challenging to separate the signal and noise. Our proposed method is based on the FRF obtained from the analytical solution of the equation of motion of the viscoelastic beam and relationship between the complex wavenumber (real wavenumber and attenuation constant) of flexural wave and viscoelasticity. Furthermore, a large loss factor can be handled over a wide frequency range without using the half-power bandwidth. In this study, actual FRF mobility data containing noise were processed using preprocessing, inverse calculation, and postprocessing. Preprocessing removed low-coherence data, compensates for the effects of instrument gain, and transformed the FRF into its dimensionless equivalent. Then, inverse calculations were used to solve the mobility equation and determine the complex wavenumber. In postprocessing, the complex wavenumber obtained by the inverse calculation was curve fitted using functions with mechanical significance. Consequently, the storage modulus based on the curve-fitted complex wavenumber was a monotonically increasing frequency function. The loss factor had a smooth frequency dependence such that it has the maximum value at a single frequency. The proposed method can be applied to composite materials, where the application of time-temperature superposition is challenging. We utilized the measured FRF mobility data obtained over a duration of several seconds, and this method can also be applied to materials with large loss factors of 1 or more.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Radu Constantin Parpala ◽  
Diana Popescu ◽  
Cristina Pupaza

Purpose The mechanical performances of 3D-printed parts are influenced by the manufacturing variables. Many studies experimentally evaluate the impact of the process parameters on specimens’ static and dynamic behavior with the aim of tailoring the mechanical response of the prints. However, this experimental approach is hampered by the very large number of parameters, 3D printers and materials, the development of computer simulation models being thus required. In the context, this study aims to fill a gap by experimentally investigating the influence of infill related parameters over the vibrations of 3D-printed specimens, as well as to propose and validate a parametric finite element (FE) model for the prediction of eigenfrequencies. Design/methodology/approach A generally applicable FE model is not yet available for the 3D printing technology based on the material extrusion process due to the large number of parameters settings that determine a large variability of outcomes. Hence, the idea of developing numerical simulation models that address sets of parameters and assess their impact on a certain mechanical property. For the natural frequency, the influence of the infill density and infill line width is studied in this paper. An FE script that automates the generation of the model geometry by using the considered set of parameters is developed and run. The results of the modal analysis are compared to the experimental values for validating the script. Findings Based on the experimental results, a linear regression between the weight of the part and the first natural frequency is established. The response surfaces indicate that the infill density is the most significant parameter of influence. The weight-frequency function is then used for the prediction of the natural frequency of specimens manufactured with other infill parameters and values, including different infill patterns. Practical implications As the malfunctions or mechanical damages can be caused by the resonant vibration of parts during use, this research develops a FE-parameterized model that evaluates and predicts the eigenfrequencies of 2D printed parts to prevent these undesirable events. The targeted functional applications are those in which 3D-printed polymer parts are used, such as drone arms or drone propellers. Originality/value This research studies the influence of process parameters on the natural frequency of 3D-printed polylactic acid specimens, a topic scarcely addressed in literature. It also proposes a new approach for the development of parameterized FE models for sets of parameters, instead of a general model, to reduce the time and resources allocated to the experimental tests. Such a model is provided in this paper for evaluating the influence of infill parameters on 3D prints eigenfrequency. The numerical model is validated for other infill settings.


Author(s):  
Ying Rao ◽  
Yongxin Guo ◽  
Duo Xu

AbstractThe presence of near-surface karst voids is an extremely difficult issue in the construction of a high-speed rail (HSR) foundation. Seismic constant-offset profile (COP) method is one of the shallow geophysics technologies which may be used for the detection of karst voids. Although a COP image does not directly reveal the characters related to the anomalies in a karst terrain, the dominant frequency of the COP image in a karst terrain is significantly lower than the dominant frequency over the background without karstification or voids. This dominant-frequency anomaly is due to the strong attenuation effect when seismic waves propagate through any karst voids. Thus, we propose using the dominant-frequency anomalies of the COP image to directly detect near-surface karst voids in a karst terrain. First, we generate a high-resolution time–frequency spectrum for each COP trace, using the modified Wigner-Ville distribution (WVD) algorithm which combines WVD with a multichannel maximum entropy method. Second, we estimate a high-precision dominant-frequency function which varies along the reflection time, based on the corresponding high-resolution time–frequency spectrum. Finally, we detect the geological anomalies by analyzing low-frequency distributions in the dominant-frequency image for all traces. We demonstrate this procedure with a case study for the detection of karst voids within the high-speed rail foundation in a karst terrain, and verify the interpretation of hidden voids, cavities, clays and peats directly with drilling cores.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1408
Author(s):  
Leidy Mabel Alvero-Gonzalez ◽  
Victor Medina ◽  
Vahur Kampus ◽  
Susana Paton ◽  
Luis Hernandez ◽  
...  

This paper proposes a new circuit-based approach to mitigate nonlinearity in open-loop ring-oscillator-based analog-to-digital converters (ADCs). The approach consists of driving a current-controlled oscillator (CCO) with several transconductors connected in parallel with different bias conditions. The current injected into the oscillator can then be properly sized to linearize the oscillator, performing the inverse current-to-frequency function. To evaluate the approach, a circuit example has been designed in a 65-nm CMOS process, leading to a more than 3-ENOB enhancement in simulation for a high-swing differential input voltage signal of 800-mVpp, with considerable less complex design and lower power and expected area in comparison to state-of-the-art circuit based solutions. The architecture has also been checked against PVT and mismatch variations, proving to be highly robust, requiring only very simple calibration techniques. The solution is especially suitable for high-bandwidth (tens of MHz) medium-resolution applications (10–12 ENOBs), such as 5G or Internet-of-Things (IoT) devices.


Author(s):  
Tobias Holck Colding ◽  
William P Minicozzi II

Abstract We prove monotonicity of a parabolic frequency on static and evolving manifolds without any curvature or other assumptions. These are parabolic analogs of Almgren’s frequency function. When the static manifold is Euclidean space and the drift operator is the Ornstein–Uhlenbeck operator, this can been seen to imply Poon’s frequency monotonicity for the ordinary heat equation. When the manifold is self-similarly evolving by the Ricci flow, we prove a parabolic frequency monotonicity for solutions of the heat equation. For the self-similarly evolving Gaussian soliton, this gives directly Poon’s monotonicity. Monotonicity of frequency is a parabolic analog of the 19th century Hadamard three-circle theorem about log convexity of holomorphic functions on C. From the monotonicity, we get parabolic unique continuation and backward uniqueness.


Sign in / Sign up

Export Citation Format

Share Document