A simulation study of population interaction between the greenhouse whitefly,Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) and the parasitoidEncarsia formosa Gahan (Hymenoptera: Aphelinidae) II. Simulation analysis of population dynamics and strategy of biological control

1989 ◽  
Vol 31 (1) ◽  
pp. 89-104 ◽  
Author(s):  
Eizi Yano
1992 ◽  
Vol 2 (4) ◽  
pp. 457-460 ◽  
Author(s):  
R.W. McMahon ◽  
R.K. Lindquist ◽  
M.L. Casey ◽  
A.C. Witt ◽  
S.H. Kinnamon

A demonstration study was conducted to compare the effectiveness of biological and chemical control treatments on the greenhouse whitefly (GHWF) (Trialeurodes vaporariorum, Westwood) using poinsettia (Euphorbia pulcherrima Wild.) stock plants. Two identical greenhouse compartments, each containing 84 stock plants, were used. In the biological control compartment, three biweekly releases of Encarsia formosa (EF) were made, while in the chemical control compartment eight weekly applications of resmethrin or acephate aerosol treatments were made. Results showed that overall greenhouse whitefly populations in the chemical control compartment were slightly lower than in the biological control compartment. Cuttings taken from stock plants in the biological control compartment at the end of the experiment were commercially acceptable with regard to the presence of GHWF adults. Chemical names used: O,S-dimethyl acetylphosphoramidothioate (acephate), [5-(phenylmethyl)-3-furanyl] methyl 2,2-dimethyl-3-(2-methyl-1-propenyl)cyclopropane-carboxylate (resmethrin).


1993 ◽  
Vol 28 (1) ◽  
pp. 126-135 ◽  
Author(s):  
T. X. Liu ◽  
R. D. Oetting ◽  
G. D. Buntin

The effects of three insecticides, bifenthrin, endosulfan and aldicarb, on the within- and between-plant distributions of both greenhouse whitefly (GHWF), Trialeurodes vaporariorum (Westwood), and sweetpotato whitefly (SPWF), Bemisia tabaci (Gennadius), were examined on greenhouse-grown poinsettia using Taylor's Power Law. Insecticide applications affected the spatial distribution of GHWF and SPWF. The populations of immatures of both species surviving an insecticide application on poinsettia were less aggregated within and between plants than untreated populations. Among the three insecticides, the efficacy against the two whiteflies was not significantly different at the end of the seventh week when multiple applications were conducted. Aldicarb caused higher mortality of immature stages than bifenthrin and endosulfan after four weeks following a single application. A single application of bifenthrin and endosulfan affected the distribution of all whitefly stages in the first and second weeks after treatment, whereas aldicarb did not affect the whitefly population until the third week. Insecticidal treatments had little effect on the stratification of whitefly stages within the plant.


Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.


2021 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Philip W. Tipping ◽  
Melissa R. Martin ◽  
Jeremiah R. Foley ◽  
Ryan M. Pierce ◽  
Lyn A. Gettys

AbstractThe potential of Melaleuca quinquenervia (Cav.) S.T. Blake to reinvade cleared areas was evaluated over a 13-yr period that included two wildfires and the introduction of biological control agents. The first wildfire occurred in 1998 and was followed by a mean of 591.5 recruited seedlings m−2. Recruits from that fire were cleared 7 yr later in July 2005 for a second experiment to evaluate seedling recruitment into cleared areas. Seed rain, seedling recruitment and mortality, and sapling growth rates were measured in four plots located around individual large reproductive trees. A second natural wildfire in 2007 burned through those plots, leading to increases in seed rain followed by a pulse in recruitment of 21.04 seedlings m−2, 96.5% fewer than after the 1998 fire. Recruits in half of the plots around each tree were then treated with regular applications of an insecticide to restrict herbivory by biological control agents, while herbivory was not restricted in the other half. There was no difference in seedling mortality between treatments 1,083 d post-fire (2007) with 96.6% seedling mortality in the unrestricted herbivory treatment and 89.4% mortality in the restricted herbivory treatment. Recruits subjected to the restricted herbivory treatment grew taller than those in the unrestricted herbivory treatment, 101.3 cm versus 37.4 cm. Many of the recruits were attacked by the biological control agents, which slowed their growth. Although solitary M. quinquenervia trees retain some capacity to reinvade areas under specific circumstances, there was a downward trend in their overall invasiveness at this site, with progressively smaller recruitment cohorts due to biological control agents. Land managers should prioritize removing large reproductive trees over treating recently recruited populations, which can be left for many years for the biological control agents to suppress before any additional treatment would be needed.


Sign in / Sign up

Export Citation Format

Share Document