Studies on the lipids of sheep red blood cells. I. Lipid composition in low and high potassium red cells

Lipids ◽  
1967 ◽  
Vol 2 (1) ◽  
pp. 64-71 ◽  
Author(s):  
Gary J. Nelson
1971 ◽  
Vol 57 (5) ◽  
pp. 593-609 ◽  
Author(s):  
Robert B. Gunn ◽  
Daniel C. Tosteson

2,4,6-Trinitro-3-methyl-phenol (trinitrocresol, H+TNC-) was found to inhibit anion and stimulate cation movements across the membranes of both high potassium (HK) and low potassium (LK) sheep red blood cells. The concentration of TNC- required to inhibit SO4- and Cl- efflux (10-5-10-3 M) was less than that required to increase Na+ and K+ leakage (10-3-10-2 M). Both the inhibition of anion and stimulation of cation permeation were reversed if TNC- was washed from the red cells. The cation leak caused by TNC- was much greater at 0° and 37°C than at room temperature (23°C). In sheep red cells, TNC- was found to be about 20 times more effective than salicylate and about 40 times more effective than thiocyanate in increasing cation leak. TNC- also inhibited the ouabain-sensitive potassium influx.


1969 ◽  
Vol 129 (4) ◽  
pp. 757-774 ◽  
Author(s):  
Nabih I. Abdou ◽  
Maxwell Richter

Irradiated rabbits given allogeneic bone marrow cells from normal adult donors responded to an injection of sheep red blood cells by forming circulating antibodies. Their spleen cells were also capable of forming many plaques using the hemolysis in gel technique, and were also capable of undergoing blastogenesis and mitosis and of incorporating tritiated thymidine upon exposure to the specific antigen in vitro. However, irradiated rabbits injected with allogeneic bone marrow obtained from rabbits injected with sheep red blood cells 24 hr prior to sacrifice (primed donors) were incapable of mounting an immune response after stimulation with sheep red cells. This loss of reactivity by the bone marrow from primed donors is specific for the antigen injected, since the immune response of the irradiated recipients to a non-cross-reacting antigen, the horse red blood cell, is unimpaired. Treatment of the bone marrow donors with high-titered specific antiserum to sheep red cells for 24 hr prior to sacrifice did not result in any diminished ability of their bone marrow cells to transfer antibody-forming capacity to sheep red blood cells. The significance of these results, with respect to the origin of the antigen-reactive and antibody-forming cells in the rabbit, is discussed.


1974 ◽  
Vol 64 (5) ◽  
pp. 536-550 ◽  
Author(s):  
John R. Sachs ◽  
Philip B. Dunham ◽  
Donna L. Kropp ◽  
J. Clive Ellory ◽  
Joseph F. Hoffman

The characteristics of the interaction of Na-K pumps of high potassium (HK) and low potassium (LK) goat red blood cells with ouabain have been determined. The rate of inhibition by ouabain of the pump of HK cells is greater than the rate of inhibition of the pumps of LK cells. Treatment of LK cells with an antibody (anti-L) raised in HK sheep by injecting LK sheep red cells increases the rate of inhibition of the LK pumps by ouabain to that characteristic of HK pumps; reduction of intracellular K (Kc) in LK cells increases the rate at which ouabain inhibits their pumps and exposure of these low Kc cells to anti-L does not affect the rate of inhibition. There is considerable heterogeneity in the pumps of both HK and LK cells in the rate at which they interact with ouabain or the rate at which they pump or both. LK pumps which are sensitive to stimulation by anti-L bind ouabain less rapidly than the remainder of the LK pumps and exposure to antibody increases the rate at which ouabain binds to the sensitive pumps; the difference between the two types of pumps disappears if intracellular K is very low. The calculated number of ouabain molecules bound at 100% inhibition of the pump is about the same for HK and LK cells. Although exposure to anti-L increases the apparent number of ouabain binding sites in LK cells at normal Kc, it does not alter the apparent number of sites in LK cells when Kc has been reduced.


1974 ◽  
Vol 63 (4) ◽  
pp. 389-414 ◽  
Author(s):  
John R. Sachs ◽  
J. Clive Ellory ◽  
Donna L. Kropp ◽  
Philip B. Dunham ◽  
Joseph F. Hoffman

The kinetic characteristics of the Na:K pump in high potassium (HK) and low potassium (LK) goat red cells were investigated after altering the intracellular cation concentrations. At low concentrations of intracellular K (Kc), increasing Kc at first stimulates the active K influx in HK cells, but at higher Kc the pump is inhibited. These results suggest that in HK cells Kc acts both at a stimulatory site at the inner aspect of the pump and by competition with intracellular Na (Nac) at the Na translocation sites. In LK cells, Kc inhibits the active K influx and the sensitivity of LK cells to inhibition is much greater than the sensitivity of HK cells. Exposure of LK cells to an antibody (anti-L), raised in an HK sheep by injection of LK sheep cells, increased the active K influx at any given Kc. The effect of the antibody was greater at higher intracellular K concentrations, and in cells with very low concentrations of K the antibody had little effect on the pump rate. The failure of anti-L to stimulate the pump in low Kc LK cells was not due to failure of the antibody to bind to the cells. Anti-L combining at the outer surface of the cell reduces the affinity of the pump at the inner surface for K at the inhibitory sites. The maximal pump rate in LK cells at optimal Na and K concentrations is less than the maximal pump rate of HK cells under the same circumstances.


1985 ◽  
Vol 63 (11) ◽  
pp. 1454-1459
Author(s):  
M. W. Wolowyk ◽  
J. C. Ellory

The red blood cells of lambs, genotypically low potassium type, undergo a transition from high potassium to low potassium cell type from parturition onwards. This involves gradual changes in cell ion content, sodium pump activity, and ouabain binding. In the present study we investigated the properties of fetal red blood cells from 30 days prepartum using the chronically cannulated pregnant ewe preparation. We demonstrate that intracellular sodium increases and potassium decreases from −30 days onwards. Sodium pump activity monitored either by tracer potassium influx or ouabain binding is markedly higher in the early fetal samples examined and declines fourfold during the final month in utero. Unlike the maternal low potassium cells the early fetal red cells are refractory in terms of sodium pump stimulation by anti-L, the antibody in fact consistently inhibiting the pump. Finally, we have investigated the volume sensitivity and development of the ouabain-insensitive potassium fluxes in these cells and found that both fetal and maternal cells show a marked chloride-dependent, volume-sensitive passive potassium flux. We conclude that the decrease in active sodium transport between fetal red cells and adult low potassium cells is achieved partly by a reduction in the density of sodium pumps per cell, and then later by the introduction into the circulation of cells with Lp-antigen-modified sodium pumps.


1980 ◽  
Vol 21 (2) ◽  
pp. 291-298
Author(s):  
Veslemøy Myhruold

Sign in / Sign up

Export Citation Format

Share Document