scholarly journals Wave functions and energy levels of the Schrödinger equation with two-coulomb-center plus harmonic-oscillator potential

1998 ◽  
Vol 117 (3) ◽  
pp. 1396-1401
Author(s):  
D. U. Matrasulov
2015 ◽  
Vol 58 (1) ◽  
pp. 7-13
Author(s):  
Theodor-Felix Iacob ◽  
Marina Lute ◽  
Felix Iacob

Abstract We consider the Schrödinger equation with pseudo-Gaussian potential and point out that it is basically made up by a term representing the harmonic oscillator potential and an additional term, which is actually a power series that converges rapidly. Based on this observation the system can be considered as a perturbation of harmonic oscillator. The perturbation method is used to approximate the energy levels of pseudo- Gaussian oscillator. The results are compared with those obtained in the analytic and numeric case.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
H. Hassanabadi ◽  
W. S. Chung ◽  
S. Zare ◽  
S. B. Bhardwaj

We studied the q-deformed Morse and harmonic oscillator systems with appropriate canonical commutation algebra. The analytic solutions for eigenfunctions and energy eigenvalues are worked out using time-independent Schrödinger equation and it is also noted that these wave functions are sensitive to variation in the parameters involved.


1994 ◽  
Vol 09 (22) ◽  
pp. 3989-4008 ◽  
Author(s):  
URSULA CAROW-WATAMURA ◽  
SATOSHI WATAMURA

We consider the q-deformed Schrödinger equation of the harmonic oscillator on the N-dimensional quantum Euclidean space. The creation and annihilation operators are found, which systematically produce all energy levels and eigenfunctions of the Schrödinger equation. In order to get the q series representation of the eigenfunction, we also give an alternative way to solve the Schrödinger equation which is based on the q analysis. We represent the Schrödinger equation by the q difference equation and solve it by using q polynomials and q exponential functions.


2006 ◽  
Vol 20 (32) ◽  
pp. 5417-5425
Author(s):  
HONG-YI FAN ◽  
TONG-TONG WANG ◽  
YAN-LI YANG

We show that the recently proposed invariant eigenoperator method can be successfully applied to solving energy levels of electron in an anisotropic quantum dot in the presence of a uniform magnetic field (UMF). The result reduces to the energy level of electron in isotropic harmonic oscillator potential and in UMF naturally. The Landau diamagnetism decreases due to the existence of the anisotropic harmonic potential.


2021 ◽  
Author(s):  
Fabian Teichert ◽  
Eduard Kuhn ◽  
Angela Thränhardt

Abstract Experimental results from literature show equidistant energy levels in thin Bi films on surfaces, suggesting a harmonic oscillator description. Yet this conclusion is by no means imperative, especially considering that any measurement only yields energy levels in a finite range and with a nonzero uncertainty. Within this study we review isospectral potentials from the literature and investigate the applicability of the harmonic oscillator hypothesis to recent measurements. First, we describe experimental results from literature by a harmonic oscillator model, obtaining a realistic size and depth of the resulting quantum well. Second, we use the shift-operator approach to calculate anharmonic non-polynomial potentials producing (partly) equidistant spectra. We discuss different potential types and interpret the possible modeling applications. Finally, by applying n th o rder perturbation theory we show that exactly equidistant eigenenergies cannot be achieved by polynomial potentials, except by the harmonic oscillator potential. In summary, we aim to give an overview over which conclusions may be drawn from the experimental determination of energy levels and which may not.


Sign in / Sign up

Export Citation Format

Share Document