The effects of thermosetting and castable encapsulation methods on the metallographic preparation of ceramic thermally sprayed coatings—A technical note

1994 ◽  
Vol 3 (3) ◽  
pp. 263-269
Author(s):  
G. A. Blann
Author(s):  
E. Kharlanova ◽  
S. Lafrenière ◽  
G.E. Kim ◽  
T.A. Brzezinski

Abstract In order to properly characterize the entire deposition process, evaluation of the coating, including a reliable metallographic preparation technique which reveals the true microstructure, must be performed. Often, recommended metallographic sample preparation methods for thermally sprayed coatings are generic and are not tailored to specific materials. They are time-consuming and, in some cases, may provide inaccurate details (pull-outs, smearing, etc). This could lead to a wrong interpretation of the coating quality. The aim of the investigation was to develop new metallographic sample preparation procedures tailored to different types of coatings (metallic, ceramic, multilayer and composites), in order to reveal a more representative microstructure. A comparative study of different preparation procedures for the examination of various as-sprayed coatings is presented using an optical microscope. The coatings were deposited by atmospheric and vacuum plasma spray (APS and VPS) and high velocity oxygen fuel (HVOF) processes. A separate approach is recommended for choosing the right metallographic preparation procedure for ceramic, metallic, or composite coatings. Applied load and positioning of the mounted sample during preparation are identified as key factors in developing proper procedures. The microhardness of the coating must be considered when determining the applied load. Interesting practical trends in preparation procedures that may lead to superior coating representation and, in some instances, cost and time savings are presented.


Author(s):  
E. Lugscheider ◽  
C. Herbst ◽  
A. Fischer

Abstract Thermally sprayed coatings of high performance thermoplastics are of interest espacially for the chemical industry for anti-corrosion applications at elevated temperatures. In this paper coatings of polyetherether-keton (PEEK) and polyphenylen-sulphide (PPS) have been produced by simple flamespraying. They have been investigated by optical metallography, FT-IR analysis and DSC-analysis. Among the coating properties also the "in-flight" particles have been studied by wipe-tests and FT-IR analysis in order to assess possible decomposition effects during spraying.


Author(s):  
M. Loch ◽  
G. Barbezat

Abstract LPPS Thin Film is a new technology for the production of thin functional coatings. The coatings produced can fill the well known gap of coating thickness between conventional thin films (PVD, CVD and others) and conventional thermally sprayed coatings (Plasma, HVOF and others). The application is successful, if the advantages of the new technology (large areas can be dense coated within a very short time) are combined with the specific properties of thermally sprayed coatings to the benefit of the intended application. Beside the technology of LPPS Thin Film and it's characteristics the paper will summarise important properties of Alumina described in the literature and present some corresponding properties of Aluminium oxide coatings produced by LPPS Thin Film.


Sign in / Sign up

Export Citation Format

Share Document