A study of the distribution of total, free, short-chain acyl and long-Chain acyl carnitine in whole blood and plasma of arabian sand gazelles (Gazella subgutturosa marica)

1997 ◽  
Vol 7 (2) ◽  
pp. 65-69 ◽  
Author(s):  
M. S. Al-Eissa ◽  
A. S. Alhomida
1985 ◽  
Vol 33 (8) ◽  
pp. 744-748 ◽  
Author(s):  
M T Knabb ◽  
G G Ahumada ◽  
B E Sobel ◽  
J E Saffitz

A tissue processing procedure was evaluated for fixation of endogenous long-chain acyl carnitine (LCA) to facilitate autoradiographic subcellular localization of this amphiphile. Suspensions of neonatal rat myocytes labeled with exogenous 14C-palmitoyl carnitine retained 85.2% of the radiolabel after tissue processing. Autoradiography demonstrated no significant translocation of radiolabeled LCA from myocytes to unlabeled sheep erythrocytes mixed in equal proportions and processed together. To evaluate endogenous LCA fixation, cultured myocytes were incubated for 3 days with 3H-carnitine. Radioactivity was distributed in LCA, short-chain acyl carnitine, and free carnitine pools in proportion to the physiological concentrations of the metabolites traced. Before tissue processing, LCA contained 4.5% of total radioactivity. After tissue processing, labeled water-soluble components were lost and 88% of the retained radioactivity was in the LCA pool. The enrichment of endogenous LCA radioactivity was attributable to the selective extraction of endogenous short-chain and free carnitine. Nearly 75% of endogenous LCA was preserved. In contrast, 99.5% of both endogenous short-chain and free carnitine were extracted. Thus, endogenous LCA can be selectively preserved, permitting quantitative subcellular localization of this amphiphile with ultrastructural autoradiography.


2000 ◽  
Vol 28 (6) ◽  
pp. 760-762 ◽  
Author(s):  
C. Masterson ◽  
A. Blackburn ◽  
C. Wood

Acyl-CoA dehydrogenase activity has been measured in homogenates of post-imbibition to 14-day-old hydroponically grown pea seeds at daily intervals, using C4, C12 and C16 acyl-CoA substrates. The activity peaks of the different chain-length acyl-CoA dehydrogenases did not transpose at all points and the ratios of the chain-length activities were not constant. It therefore has to be concluded that more than one dehydrogenase is present in pea mitochondria. There was a post-imbibition initial surge of activity with short- and mid-chain-length substrates. The C16- handling enzyme first peaked at 3–4 days, which coincided with the onset of plumule unfurling and greening. Further peaks were observed with all three substrates, coinciding with secondary root formation and leaf enlargement and later with cotyledon degeneration. Overall activity showed that the long-chain acyl-CoA dehydrogenase was much more active than the short-chain acyl-CoA dehydrogenase.


1996 ◽  
Vol 320 (2) ◽  
pp. 607-614 ◽  
Author(s):  
Mark A. HOOKS ◽  
Kornelia BODE ◽  
Ivan COUÉE

Medium- and short-chain acyl-CoA oxidases were identified in and subsequently purified from dark-grown maize plantlets. The oxidase showing preference for medium-chain fatty acyl-CoAs (C10–C14) was purified to homogeneity. The oxidase showing preference for short-chain fatty acyl-CoAs (C4–C8) was purified over 150-fold. Various catalytic properties confirmed these enzymes to be true acyl-CoA oxidases. They produced trans-2-enoyl-CoA and H2O2 from the saturated acyl-CoA, as verified by various independent assay techniques. They also exhibited FAD-dependent activity; i.e. removal of loosely bound FAD by gel filtration markedly reduced activity, which could be restored upon re-addition of FAD. They showed apparent Km values between 2 and 10 µM for the acyl-CoA substrate giving maximal activity, no activity with the corresponding free fatty acid, high pH optima (8.3–8.6) and a peroxisomal subcellular location. The medium-chain acyl-CoA oxidase was determined to be a monomeric protein with a molecular mass of 62 kDa. The short-chain acyl-CoA oxidase was shown to have a native molecular mass of 60 kDa, but exhibited a labile multimeric structure, as indicated by the elution of multiple peaks of activity during several chromatographic steps, and ultimately by the purification of a subunit of molecular mass 15 kDa. The medium- and short-chain acyl-CoA oxidases were demonstrated to be distinct from the maize equivalent of the cucumber glyoxysomal long-chain acyl-CoA oxidase previously purified and characterized [Kirsch, Loffler and Kindl (1986) J. Biol. Chem. 261, 8570–8575]. The maize long-chain acyl-CoA oxidase was partially purified to permit determination of its substrate specificity; it showed activity with a broad range of acyl-CoAs of chain length greater than C8, and maximal activity with C16. The implications of the existence of multiple acyl-CoA oxidases in the regulation of plant peroxisomal β-oxidation are discussed.


Sign in / Sign up

Export Citation Format

Share Document