Physical modeling studies of electrolyte flow due to gas evolution and some aspects of bubble behavior in advanced hall cells: Part II. Flow and interpolar resistance in cells with a grooved anode

1994 ◽  
Vol 25 (3) ◽  
pp. 341-349 ◽  
Author(s):  
R. Shekhar ◽  
J. W. Evans
Author(s):  
Conceição Fortes ◽  
Maria da Graça Neves ◽  
Ana Mendonça ◽  
Liliana Pinheiro ◽  
Luís Leite ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Marzieh Baes ◽  
Robert J. Stern ◽  
Scott Whattam ◽  
Taras V. Gerya ◽  
Stephan V. Sobolev

Subduction initiation induced by a hot and buoyant mantle plume head is unique among proposed subduction initiation mechanisms because it does not require pre-existing weak zones or other forces for lithospheric collapse. Since recognition of the first evidence of subduction nucleation induced by a mantle plume in the Late Cretaceous Caribbean realm, the number of studies focusing on other natural examples has grown. Here, we review numerical and physical modeling and geological-geochemical studies which have been carried out thus far to investigate onset of a new subduction zone caused by impingement of a mantle plume head. As geological-geochemical data suggests that plume-lithosphere interactions have long been important - spanning from the Archean to the present - modeling studies provide valuable information on the spatial and temporal variations in lithospheric deformation induced by these interactions. Numerical and physical modeling studies, ranging from regional to global scales, illustrate the key role of plume buoyancy, lithospheric strength and magmatic weakening above the plume head on plume-lithosphere interactions. Lithospheric/crustal heterogeneities, pre-existing lithospheric weak zones and external compressional/extensional forces may also change the deformation regime caused by plume-lithosphere interaction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soufiane Abdelghani-Idrissi ◽  
Nicolas Dubouis ◽  
Alexis Grimaud ◽  
Philippe Stevens ◽  
Gwenaëlle Toussaint ◽  
...  

AbstractIn this study, the effect of flow of the electrolyte on an electrolysis cell and a zinc cell is investigated. The gain of energy brought by the flow is discussed and compared to the viscous losses in the cells. We point out that the balance between the gained electrical power and the viscous loss power is positive only if the hydrodynamic resistance of the circuit is correctly designed and further comment on the economical viability of the whole process. A model of the studied phenomena is proposed in the last section. This analytical model captures the dynamics of the process, gives the optimal flowing conditions and the limits of the energetical rentability of the process. This study shows that the use of flowing electrolyte in zinc–air batteries can be energetically profitable with the appropriate flowing conditions.


1999 ◽  
Vol 81 (5) ◽  
pp. 2360-2373 ◽  
Author(s):  
X. J. Zhan ◽  
C. L. Cox ◽  
J. Rinzel ◽  
S. Murray Sherman

Current clamp and modeling studies of low-threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. All thalamic relay cells display a voltage-dependent low-threshold Ca2+ spike that plays an important role in relay of information to cortex. We investigated activation properties of this spike in relay cells of the cat’s lateral geniculate nucleus using the combined approach of current-clamp intracellular recording from thalamic slices and simulations with a reduced model based on voltage-clamp data. Our experimental data from 42 relay cells showed that the actual Ca2+ spike activates in a nearly all-or-none manner and in this regard is similar to the conventional Na+/K+ action potential except that its voltage dependency is more hyperpolarized and its kinetics are slower. When the cell’s membrane potential was hyperpolarized sufficiently to deinactivate much of the low-threshold Ca2+ current ( I T) underlying the Ca2+ spike, depolarizing current injections typically produced a purely ohmic response when subthreshold and a full-blown Ca2+ spike of nearly invariant amplitude when suprathreshold. The transition between the ohmic response and activated Ca2+ spikes was abrupt and reflected a difference in depolarizing inputs of <1 mV. However, activation of a full-blown Ca2+ spike was preceded by a slower period of depolarization that was graded with the amplitude of current injection, and the full-blown Ca2+ spike activated when this slower depolarization reached a sufficient membrane potential, a quasithreshold. As a result, the latency of the evoked Ca2+ spike became less with stronger activating inputs because a stronger input produced a stronger depolarization that reached the critical membrane potential earlier. Although Ca2+ spikes were activated in a nearly all-or-none manner from a given holding potential, their actual amplitudes were related to these holding potentials, which, in turn, determined the level of I T deinactivation. Our simulations could reproduce all of the main experimental observations. They further suggest that the voltage-dependent K+ conductance underlying I A, which is known to delay firing in many cells, does not seem to contribute to the variable latency seen in activation of Ca2+ spikes. Instead the simulations indicate that the activation of I T starts initially with a slow and graded depolarization until enough of the underling transient (or T) Ca2+ channels are recruited to produce a fast, “autocatalytic” depolarization seen as the Ca2+spike. This can produce variable latency dependent on the strength of the initial activation of T channels. The nearly all-or-none nature of Ca2+ spike activation suggests that when a burst of action potentials normally is evoked as a result of a Ca2+ spike and transmitted to cortex, this signal is largely invariant with the amplitude of the input activating the relay cell.


2020 ◽  
Vol 982 ◽  
pp. 165-172
Author(s):  
Sheng Hao Li ◽  
Ao Huang ◽  
Yun Tao Qu ◽  
Xin Lu ◽  
Hua Zhi Gu ◽  
...  

With the increasing requirements for steel quality, the refining conditions are increasing strict. The high-speed movement of molten steel under mechanical or pneumatic agitation can uniform the temperature and composition, and accelerate the collision of the inclusions to eliminate. However, the electromagnetic field has an important influence on the removal of inclusions in steel and the corrosion of refractory materials. The magnetic phenomenon caused by the movement of molten steel needs to be explored. Considering the complexity of high temperature thermal simulation, this work adopted the physical modeling combined with mathematical simulation method, saturated sodium chloride solution was selected to simulate molten steel as a liquid electrolyte, the magnetic phenomenon caused by solution motion was tested and analyzed, and mathematical model of solution motion magnetization was based on discharge mechanism and magnetic vector potential superposition principle, then the variation law of spatial magnetic field generated by liquid electrolyte flow was discussed. The results show that the simulation results agree with that of the physical modeling, and the mathematical model is promising for prediction of the magnetic field generated by liquid electrolyte flow. Under a constant flow speed of 2000 r/min, a magnetic field with magnetic flux density up to 0.15 Gs was produced, which has a significant effect on the refractory corrosion and removal of impurities in the molten steel.


Sign in / Sign up

Export Citation Format

Share Document