viscous losses
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 2)

H-INDEX

16
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2001
Author(s):  
Frederick H. Silver ◽  
Nikita Kelkar ◽  
Tanmay Deshmukh

Energy storage and dissipation by composite materials are important design parameters for sensors and other devices. While polymeric materials can reversibly store energy by decreased chain randomness (entropic loss) they fail to be able to dissipate energy effectively and ultimately fail due to fatigue and molecular chain breakage. In contrast, composite tissues, such as muscle and tendon complexes, store and dissipate energy through entropic changes in collagen (energy storage) and viscous losses (energy dissipation) by muscle fibers or through fluid flow of the interfibrillar matrix. In this paper we review the molecular basis for energy storage and dissipation by natural composite materials in an effort to aid in the development of improved substrates for sensors, implants and other commercial devices. In addition, we introduce vibrational optical coherence tomography, a new technique that can be used to follow energy storage and dissipation by composite materials without physically touching them.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soufiane Abdelghani-Idrissi ◽  
Nicolas Dubouis ◽  
Alexis Grimaud ◽  
Philippe Stevens ◽  
Gwenaëlle Toussaint ◽  
...  

AbstractIn this study, the effect of flow of the electrolyte on an electrolysis cell and a zinc cell is investigated. The gain of energy brought by the flow is discussed and compared to the viscous losses in the cells. We point out that the balance between the gained electrical power and the viscous loss power is positive only if the hydrodynamic resistance of the circuit is correctly designed and further comment on the economical viability of the whole process. A model of the studied phenomena is proposed in the last section. This analytical model captures the dynamics of the process, gives the optimal flowing conditions and the limits of the energetical rentability of the process. This study shows that the use of flowing electrolyte in zinc–air batteries can be energetically profitable with the appropriate flowing conditions.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Debi Prasad Mishra ◽  
M. Sankarganesh

AbstractMicro-propulsion is considered to be the emerging technology for the propulsion of micro and micro aerospace vehicles as it is preferred over mesoscale thruster due to lower overall life-cycle cost and launching costs. Hence this paper investigates the influence of critical parameters like the Nozzle Pressure Ratio (NPR) and Reynolds number (Re) on the operational characteristics of the micronozzle. A conical nozzle with throat diameter 710 µm and exit/throat area ratio ∼2.14 has been designed and is analyzed numerically by using a model based on pressure-based coupled implicit for various NPR, the backpressure with three Res namely, 1000, 1500, and 2000. The performance of this micronozzle has been characterized in terms of thrust, thrust coefficient, and specific impulse for all three Re cases. A subsequent analysis of the subsonic layer reveals that the nozzle is subjected to high viscous losses at low NPRs, which are independent of Re.



Author(s):  
Simone Rosa Taddei

A new blade force model is coupled to quasi-one dimensional Euler equations for a variable geometry flowpath. After analytical inclusion of the blade force, the flow equations take a strictly one-dimensional form with specific expressions of the convective flux and blade load source terms. Regardless of the flow turning, that is simply achieved by the load source term as an explicit function of the blade camber, the new form describes a perfect analogy between the average flow inside a blade passage and strictly one-dimensional flows, especially concerning wave propagation. This property allows capture of passage choking and shocks. Other types of shock more important for turbomachinery analysis, like leading edge strong shocks in compressors and trailing edge weak shocks in choked turbines, are modelled by properly matching the new set of equations inside blade regions with the standard quasi-one dimensional equations outside. Upon specification of viscous losses and subsonic deviations fitted from experimental results, the model predicts the choke mass flow of a transonic compressor stage (NASA stage 37) at a 0.1% to 0.4% accuracy both in the absence and in the presence of the leading edge shock. This result supports the effectiveness of the leading edge shock model. The accuracy on choke mass flow would decrease to around 1% if empirical input was specified from open-literature experimental correlations. The model captures the typical trend of exit angle with total pressure ratio for a choked turbine (NASA Lewis two-stage). This result involves satisfactory prediction of not only choke mass flow, but also trailing edge shock loss and supersonic deviation. The complete turbine operational map in terms of shaft torque and pressure ratio is also re-obtained with noticeable accuracy except in strong off-design conditions, where experimental correlations likely fail.



Author(s):  
Hyeonu Heo ◽  
Ezekiel Walker ◽  
Yurii Zubov ◽  
Dmitrii Shymkiv ◽  
Dylan Wages ◽  
...  

It is demonstrated that acoustic transmission through a phononic crystal with anisotropic solid scatterers becomes non-reciprocal if the background fluid is viscous. In an ideal (inviscid) fluid, the transmission along the direction of broken P symmetry is asymmetric. This asymmetry is compatible with reciprocity since time-reversal symmetry ( T symmetry) holds. Viscous losses break T symmetry, adding a non-reciprocal contribution to the transmission coefficient. The non-reciprocal transmission spectra for a phononic crystal of metallic circular cylinders in water are experimentally obtained and analysed. The surfaces of the cylinders were specially processed in order to weakly break P symmetry and increase viscous losses through manipulation of surface features. Subsequently, the non-reciprocal part of transmission is separated from its asymmetric reciprocal part in numerically simulated transmission spectra. The level of non-reciprocity is in agreement with the measure of broken P symmetry. The reported study contradicts commonly accepted opinion that linear dissipation cannot be a reason leading to non-reciprocity. It also opens a way for engineering passive acoustic diodes exploring the natural viscosity of any fluid as a factor leading to non-reciprocity.



2020 ◽  
pp. 1-14
Author(s):  
Jennie Andersson ◽  
Robert Gustafsson ◽  
Arash Eslamdoost ◽  
Rickard E. Bensow

In the preliminary design of a propulsion unit, the selection of propeller diameter is most commonly based on open water tests of systematic propeller series. The optimum diameter obtained from the propeller series data is, however, not considered to be representative for the operating conditions behind the ship, instead a slightly smaller diameter is often selected. We have used computational fluid dynamics to study a 120-m cargo vessel with an integrated rudder bulb-propeller hubcap system and a four-bladed propeller series, to increase our understanding of the hydrodynamic effects influencing the optimum. The results indicate that a 3-4% smaller diameter is optimal in behind conditions in relation to open water conditions at the same scale factor. The reason is that smaller, higher loaded propellers perform better together with a rudder system. This requires that the gain in transverse kinetic energy losses thanks to the rudder overcomes the increase in viscous losses in the complete propulsion system.



2020 ◽  
Vol 31 (15) ◽  
pp. 1821-1837
Author(s):  
Nuno Alves de Sousa ◽  
Markus Kintscher ◽  
Afzal Suleman

The dawn of research on shock and boundary layer interaction control dates back to the 1970s, when humped transonic aerofoils were first studied as a means to improve the performance of supercritical aerofoil technology at off-design conditions. Since then, shock control bumps have been found to be promising devices for such kind of flow control. They have a smearing effect on the shock wave structure achieved through isentropic pre-compression of the flow upstream of the main shock and can significantly lower wave drag without incurring unacceptable viscous losses. However, their performance is strongly dependent on a set of geometrical parameters which must be adjusted according to the ever-changing flight conditions. A concept for an adaptive shock control bump is therefore presented. The proposed actuation mechanism aims at a compact, lightweight and simple structure which could be integrated into the spoiler region of near-future aircraft without major design changes required. Numerical optimization of a simplified analytical model of the structure is used to investigate the shock control bump adaptation to various aerodynamic target shapes. Compromises between geometrical conformity and both structural and actuation related requirements are studied. Furthermore, an outlook is given on design issues related to three-dimensional effects on a finite span shock control bump.



Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1104 ◽  
Author(s):  
Alexandra Shakun ◽  
Rafal Anyszka ◽  
Essi Sarlin ◽  
Anke Blume ◽  
Jyrki Vuorinen

Detonation nanodiamonds, also known as ultradispersed diamonds, possess versatile chemically active surfaces, which can be adjusted to improve their interaction with elastomers. Such improvements can result in decreased dielectric and viscous losses of the composites without compromising other in-rubber properties, thus making the composites suitable for new demanding applications, such as energy harvesting. However, in most cases, surface modification of nanodiamonds requires the use of strong chemicals and high temperatures. The present study offers a less time-consuming functionalization method at 40 °C via reaction between the epoxy-rings of the modifier and carboxylic groups at the nanodiamond surface. This allows decorating the nanodiamond surface with chemical groups that are able to participate in the crosslinking reaction, thus creating strong interaction between filler and elastomer. Addition of 0.1 phr (parts per hundred rubber) of modified nanodiamonds into the silicone matrix results in about fivefold decreased electric losses at 1 Hz due to a reduced conductivity. Moreover, the mechanical hysteresis loss is reduced more than 50% and dynamic loss tangent at ambient temperature is lowered. Therefore, such materials are recommended for the dielectric energy harvesting application, and they are expected to increase its efficiency.



2019 ◽  
Vol 871 ◽  
pp. 1044-1066 ◽  
Author(s):  
Angel Ruiz-Angulo ◽  
Shahrzad Roshankhah ◽  
Melany L. Hunt

This article presents experimental measurements involving immersed collisions between a rigid impactor and a deformable target for a wide range of Reynolds and Stokes numbers. Three aluminium alloys are used as solid targets submerged in seven different fluids covering a wide range of viscosity and density. The collision and rebound velocities as well as the depth and diameter of the crater produced by the collisions are measured with high resolution. Most of the experiments in this study occur at velocities for which the deformation is within the elastic–plastic regime. Results of the experiments in air are analysed by elastic, plastic and elastic–plastic theories, and demonstrate the complexities of modelling elastic–plastic collisions. For collisions in a liquid, the measurements show that the size of the crater is independent of the fluid characteristics if the Stokes number is beyond a critical value. The normal coefficient of restitution can be estimated by including both viscous losses and plasticity effects and assuming that the collision time scale is significantly shorter than the hydrodynamic time scale. The results of the crater dimensions are also used to develop an analytical expression for the volume of deformation of the material as a function of material properties and the impact and critical Stokes numbers.



2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Yong Shan ◽  
Xiaoming Zhou ◽  
Xiaoming Tan ◽  
Jingzhou Zhang ◽  
Yanhua Wu

A parametric design method, which was based on super-elliptical transition and self-adaption infrared radiation shield for the double S-shaped nozzle, was introduced. The complete shielding of high-temperature components in the S-shaped nozzle was realized. Model experiments and numerical simulations were performed to investigate the effects of offset ratio S/D, the ratio of length to diameter L/D, and the aspect ratio W/H on the aerodynamics and infrared radiation. The results showed that the total pressure recovery and thrust coefficients were improved initially, but dropped rapidly with the increase in offset ratios with the range of investigated parameters. There existed an optimal offset ratio for the aerodynamic performances. Considering the weight penalty, the length of nozzles should only be increased properly to achieve better aerodynamic performances. Both friction and viscous losses caused by large streamwise vortices dominated the aerodynamic performances of nozzles. The nozzle with the aspect ratio of W/H=5.0 was recommended for achieving optimal aerodynamics. The increase in aspect and offset ratios could effectively suppress plume radiation, which was, however, not sensitive to overall radiation. Compared to circular nozzles, double S-shaped nozzles reduced overall infrared radiation by over 50%, which proves significant stealth ability. A balance between aerodynamic performances and infrared radiation suppression could be reached for double S-shaped nozzles.



Sign in / Sign up

Export Citation Format

Share Document