Molar extinction coefficients of IR absorption bands of Cu(II) dipivaloylmethanate

2000 ◽  
Vol 67 (1) ◽  
pp. 40-44
Author(s):  
L. F. Bakhturova ◽  
V. V. Bakovets ◽  
T. M. Levashova ◽  
I. P. Dolgovesova ◽  
V. O. Borisov
Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 757
Author(s):  
Tamara Jovanović

The stable isomers of the higher fullerenes C76-D2 and C84-D2:22, as well as fullerenes C60 and C70 were isolated from carbon soot by the new and improved extraction and chromatographic methods and processes. Characterizations of the C84-D2:22 isomer in this study were performed by infrared and electronic absorption spectroscopy. All of the experimentally observed IR and UV/VIS bands were in excellent agreement with the semi-empirical, DFT and TB potential theoretical calculations for this molecule. The molar extinction coefficients and the integrated molar extinction coefficients of the observed larger number of completely separated infrared absorption maxima and shoulders of fullerene C84-D2:22, as well as of its main convoluted maxima, in different and new relevant entire integration ranges, including neighboring, and all surrounding absorption shoulders were determined and their relative intensities compared. In addition, the molar absorptivity of the electronic absorption bands of this carbon cluster was found. The new IR and UV/VIS spectroscopic parameters that are significant for the quantitative determination, identification and numerous possible applications of C84-D2:22 are obtained and their changes compared to C76-D2 observed. Isolated and characterized C84-D2:22, as well as other fullerenes from this research can be used in electronic, optical, chemical and biomedical devices, superconductors, semiconductors, batteries, catalysts, polymers, sensors, solar cells, nanophotonic lenses with better optical transmission, refraction and wettability, diagnostic and therapeutic pharmaceutical substances, such as those against diabetes, cancer, neurodegenerative disorders, free radical scavenging, radio nuclear, antibacterial and antiviral agents that can inhibit HIV 1, HSV, COVID-19, influenza, malaria and so forth.


2019 ◽  
Vol 9 (3) ◽  
pp. 240-247
Author(s):  
Prabhakar Panzade ◽  
Priyanka Somani ◽  
Pavan Rathi

Background and Objective: The top approach to deliver poorly soluble drugs is the use of a highly soluble form. The present study was conducted to enhance the solubility and dissolution of a poorly aqueous soluble drug nevirapine via a pharmaceutical cocrystal. Another objective of the study was to check the potential of the nevirapine cocrystal in the dosage form. Methods: A neat and liquid assisted grinding method was employed to prepare nevirapine cocrystals in a 1:1 and 1:2 stoichiometric ratio of drug:coformer by screening various coformers. The prepared cocrystals were preliminary investigated for melting point and saturation solubility. The selected cocrystal was further confirmed by Infrared Spectroscopy (IR), Differential Scanning Calorimetry (DSC), and Xray Powder Diffraction (XRPD). Further, the cocrystal was subjected to in vitro dissolution study and formulation development. Results: The cocrystal of Nevirapine (NVP) with Para-Amino Benzoic Acid (PABA) coformer prepared by neat grinding in 1:2 ratio exhibited greater solubility. The shifts in IR absorption bands, alterations in DSC thermogram, and distinct XRPD pattern showed the formation of the NVP-PABA cocrystal. Dissolution of NVP-PABA cocrystal enhanced by 38% in 0.1N HCl. Immediate release tablets of NVP-PABA cocrystal exhibited better drug release and less disintegration time. Conclusion: A remarkable increase in the solubility and dissolution of NVP was obtained through the cocrystal with PABA. The cocrystal also showed great potential in the dosage form which may provide future direction for other drugs.


1951 ◽  
Vol 29 (10) ◽  
pp. 828-837 ◽  
Author(s):  
T. J. Hardwick ◽  
E. Robertson

Ceric ion has been shown to associate with sulphate ion to form successively Ce(SO4++, Ce(SO4)2, and Ce(SO4)3−. The association constants relating these species have been determined at 25 °C. The molar extinction coefficients of each associated complex have been found between 395 and 430 mμ. Migration experiments bear out the results qualitatively.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 814-820
Author(s):  
Yingying Jia ◽  
Ling Xu ◽  
Bangshao Yin ◽  
Mingbo Zhou ◽  
Jianxin Song

Beginning with 5,10,15-triarylporphyrin-nickel complex, five meso-to-meso directly linked porphyrin-diazaporphyrin triads were successfully prepared for the first time through a series of reactions including formylation via Vilsmeier–Haack reaction, condensation with pyrrole, bromination with [Formula: see text]-Bromosuccinimide (NBS), oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), metal-templated cyclization of dibromodipyrrin-metal complexes with NaN[Formula: see text] and demetalization. All these triads were comprehensively characterized by [Formula: see text]H NMR, high-resolution mass spectrometry and UV-vis absorption. In addition, the structure of compound 6Ni was unambiguously determined by X-ray diffraction analysis, which showed that the two dihedral angles are both 86.65 (4)[Formula: see text] between each mean plane of porphyrin and that of central diazaporphyrin The UV-vis absorption spectra disclosed that the longest wavelengths of Soret bands and Q bands for these triads were observed at 429 and 642 nm, respectively. In contrast to diazaporphyrin-porphyrin dyads, diazaporphyrin dimers and diazaporphyrin monomers reported previously the molar extinction coefficients, particularly for triad 8Ni are much higher.


RSC Advances ◽  
2015 ◽  
Vol 5 (109) ◽  
pp. 89659-89668 ◽  
Author(s):  
Felix Hemmann ◽  
Iker Agirrezabal-Telleria ◽  
Christian Jaeger ◽  
Erhard Kemnitz

A new method is described for the calculation of molar extinction coefficients for quantitative FTIR measurements of acidic surface sites.


Sign in / Sign up

Export Citation Format

Share Document