solid acid catalysts
Recently Published Documents


TOTAL DOCUMENTS

767
(FIVE YEARS 103)

H-INDEX

74
(FIVE YEARS 7)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Jan Drönner ◽  
Peter Hausoul ◽  
Regina Palkovits ◽  
Matthias Eisenacher

The oxidation of cumene and following cleavage of cumene hydroperoxide (CHP) with sulfuric acid (Hock rearrangement) is still, by far, the dominant synthetic route to produce phenol. In 2020, the global phenol market reached a value of 23.3 billion US$ with a projected compound annual growth rate of 3.4% for 2020–2025. From ecological and economical viewpoints, the key step of this process is the cleavage of CHP. One sought-after way to likewise reduce energy consumption and waste production of the process is to substitute sulfuric acid with heterogeneous catalysts. Different types of zeolites, silicon-based clays, heteropoly acids, and ion exchange resins have been investigated and tested in various studies. For every type of these solid acid catalysts, several materials were found that show high yield and selectivity to phenol. In this mini-review, first a brief introduction and overview on the Hock process is given. Next, the mechanism, kinetics, and safety aspects are summarized and discussed. Following, the different types of heterogeneous catalysts and their performance as catalyst in the Hock process are illustrated. Finally, the different approaches to substitute sulfuric acid in the synthetic route to produce phenol are briefly concluded and a short outlook is given.


2021 ◽  
Vol 6 (2) ◽  
pp. 60-68
Author(s):  
Primata Mardina ◽  
Hesti Wijayanti ◽  
Abubakar Tuhuloula ◽  
Erita Hijriyati ◽  
Sarifah

The utilization of an appropriate catalyst in biodiesel production depends on the free fatty acid content of vegetable oil as a feedstock. Recently, heterogeneous acid catalysts are widely chosen for biodiesel production. However, these catalysts are non-renewable, highly expensive and low stability. Due to the aforementioned drawbacks of commercial heterogeneous acid catalyst, a number of efforts have been made to develop renewable green solid acid catalysts derived from biomass. Published literature revealed that the application of the biomass derived solid acid catalysts can achieve up to 98% yield of biodiesel. This article focused on corncob as raw material in solid acid catalyst preparation for biodiesel production. The efficient preparation method and performance comparation are discussed here. The corncob derived heterogeneous acid catalysts provides an environmentally friendly and green synthesis for biodiesel production.


2021 ◽  
Author(s):  
◽  
Mohammad Al-Zeer

<p>Recent increased environmental awareness and the stimulus of greener chemistry has driven the rapid development of heterogeneous catalysts, particularly solid acids, for a wide range of organic synthesis applications. Typical homogenous acids suffer drastic drawbacks in terms of their corrosivity, toxicity, and reusability, in addition to their separation that generates large amounts of industrial wastes which exceeds in many cases the amount of the formed products.  Crystalline aluminosilicate inorganic polymers (zeolites) have successfully replaced the typical homogenous Lewis acids in many industrially important applications, the majority of which are in the petrochemical industries, e.g. production of olefins and aromatics. The fine chemical industries, however, are more challenging and still mainly use homogenous catalysts. Typical zeolite catalysts are hindered by their restricted micropores, and the low hydrothermal stability of other mesoporous M-silicates (such as MCM-41) results in structural deformation in aqueous solutions at elevated temperatures. Other highly promising solid catalysts suffer drawbacks of high cost, sophisticated synthesis procedures, and environmental risks from the use of toxic reagents. Thus, there is still a need for new cost-efficient reactive heterogeneous solid catalysts that are also environmentally benign.  This thesis reports the development of amorphous aluminosilicate inorganic polymers (known as geopolymers) as a novel class of heterogeneous solid acid catalysts. These geopolymers can be synthesised with the desired acidity and porosity in a very energy-efficient and simple procedure which does not involve lengthy thermal treatments or the use of costly and sometimes toxic structural directing agents that are required for the synthesis of zeolite or other mesoporous aluminosilicates.  Microporous, mesoporous and hierarchical geopolymer-based catalysts were synthesised from different precursors with high surface area and acidic sites (Bronsted and Lewis) generated within their structure by ion-exchange with ammonium ions followed by thermal treatment, allowing the nature of these acidic sites to be tailored to specific applications. Furthermore, some of the resulting geopolymer catalysts were subjected to post synthetic treatments (demetallation) which provided improved acidity and porosity.  In the first instance, the geopolymer-based catalysts were synthesised from a naturally occurring clay mineral and their catalytic performance was evaluated in the industrially important Beckmann rearrangement of cyclohexanone oxime to 𝜀-caprolactam. High catalytic reactivity and selectivity was achieved over the geopolymer-based catalysts that possess high surface area and weak surface acidities consisting of H-bonded silanol nests and vicinal silanols. The catalytic reactivity of the clay-based geopolymer catalysts was further evaluated in the Friedel-Crafts alkylation of large substituted arenes with benzyl halide as alkylating agent, where typical microporous zeolites show poor reactivity due to diffusional limitations. In this reaction, the thermal treatment was adjusted to generate the required Bronsted and Lewis acidic sites. High reactivity was achieved over several mesoporous geopolymer-based catalysts, with the best performance being observed over a hierarchical geopolymer-based catalyst that exhibits the highest acidity of all these new catalysts.  In another approach, highly reactive geopolymer-based catalysts were synthesised from industrial wastes precursors (fly ash). Several fly ashes were collected from different sources and the influence of their chemical and physical properties on the resulting geopolymers was investigated. These fly ash-based catalysts demonstrated excellent catalytic performance in the alkylation of benzene and substituted benzenes and their active sites were ascribed to a combination of Fe2O3 present in the raw fly ash, together with the Bronsted and Lewis acid sites that were generated within the geopolymers framework by the ion-exchange process followed by thermal treatment.  The use of the fly ash-based catalysts was also demonstrated in another highly demanding catalytic process, the Friedel-Crafts acylation of aromatics. High reactivity and selectivity was achieved in the acylation reactions of anisole and mesitylene using benzoylchloride as the acylating agent. In addition to their excellent catalytic reactivities, the fly ash-based geopolymer catalysts provide a valuable approach of the utilisation of industrial wastes such as fly ash, the vast production of which is becoming a world-wide concern.  The geopolymer-based catalysts developed in this work are reusable without significant loss of reactivity and their catalytic performance is superior to other commonly used solid acid catalysts. The results presented in this thesis demonstrate a great potential for geopolymers as active candidates in the field of heterogeneous catalysis, representing as they do a new class of solid acids with highly desirable features such as catalytic efficiency as well as ecological friendliness, cost effectiveness and ease of synthesis.</p>


2021 ◽  
Author(s):  
◽  
Mohammad Al-Zeer

<p>Recent increased environmental awareness and the stimulus of greener chemistry has driven the rapid development of heterogeneous catalysts, particularly solid acids, for a wide range of organic synthesis applications. Typical homogenous acids suffer drastic drawbacks in terms of their corrosivity, toxicity, and reusability, in addition to their separation that generates large amounts of industrial wastes which exceeds in many cases the amount of the formed products.  Crystalline aluminosilicate inorganic polymers (zeolites) have successfully replaced the typical homogenous Lewis acids in many industrially important applications, the majority of which are in the petrochemical industries, e.g. production of olefins and aromatics. The fine chemical industries, however, are more challenging and still mainly use homogenous catalysts. Typical zeolite catalysts are hindered by their restricted micropores, and the low hydrothermal stability of other mesoporous M-silicates (such as MCM-41) results in structural deformation in aqueous solutions at elevated temperatures. Other highly promising solid catalysts suffer drawbacks of high cost, sophisticated synthesis procedures, and environmental risks from the use of toxic reagents. Thus, there is still a need for new cost-efficient reactive heterogeneous solid catalysts that are also environmentally benign.  This thesis reports the development of amorphous aluminosilicate inorganic polymers (known as geopolymers) as a novel class of heterogeneous solid acid catalysts. These geopolymers can be synthesised with the desired acidity and porosity in a very energy-efficient and simple procedure which does not involve lengthy thermal treatments or the use of costly and sometimes toxic structural directing agents that are required for the synthesis of zeolite or other mesoporous aluminosilicates.  Microporous, mesoporous and hierarchical geopolymer-based catalysts were synthesised from different precursors with high surface area and acidic sites (Bronsted and Lewis) generated within their structure by ion-exchange with ammonium ions followed by thermal treatment, allowing the nature of these acidic sites to be tailored to specific applications. Furthermore, some of the resulting geopolymer catalysts were subjected to post synthetic treatments (demetallation) which provided improved acidity and porosity.  In the first instance, the geopolymer-based catalysts were synthesised from a naturally occurring clay mineral and their catalytic performance was evaluated in the industrially important Beckmann rearrangement of cyclohexanone oxime to 𝜀-caprolactam. High catalytic reactivity and selectivity was achieved over the geopolymer-based catalysts that possess high surface area and weak surface acidities consisting of H-bonded silanol nests and vicinal silanols. The catalytic reactivity of the clay-based geopolymer catalysts was further evaluated in the Friedel-Crafts alkylation of large substituted arenes with benzyl halide as alkylating agent, where typical microporous zeolites show poor reactivity due to diffusional limitations. In this reaction, the thermal treatment was adjusted to generate the required Bronsted and Lewis acidic sites. High reactivity was achieved over several mesoporous geopolymer-based catalysts, with the best performance being observed over a hierarchical geopolymer-based catalyst that exhibits the highest acidity of all these new catalysts.  In another approach, highly reactive geopolymer-based catalysts were synthesised from industrial wastes precursors (fly ash). Several fly ashes were collected from different sources and the influence of their chemical and physical properties on the resulting geopolymers was investigated. These fly ash-based catalysts demonstrated excellent catalytic performance in the alkylation of benzene and substituted benzenes and their active sites were ascribed to a combination of Fe2O3 present in the raw fly ash, together with the Bronsted and Lewis acid sites that were generated within the geopolymers framework by the ion-exchange process followed by thermal treatment.  The use of the fly ash-based catalysts was also demonstrated in another highly demanding catalytic process, the Friedel-Crafts acylation of aromatics. High reactivity and selectivity was achieved in the acylation reactions of anisole and mesitylene using benzoylchloride as the acylating agent. In addition to their excellent catalytic reactivities, the fly ash-based geopolymer catalysts provide a valuable approach of the utilisation of industrial wastes such as fly ash, the vast production of which is becoming a world-wide concern.  The geopolymer-based catalysts developed in this work are reusable without significant loss of reactivity and their catalytic performance is superior to other commonly used solid acid catalysts. The results presented in this thesis demonstrate a great potential for geopolymers as active candidates in the field of heterogeneous catalysis, representing as they do a new class of solid acids with highly desirable features such as catalytic efficiency as well as ecological friendliness, cost effectiveness and ease of synthesis.</p>


Author(s):  
Guangxu Yang ◽  
Xiaolin Luo ◽  
Li Shuai

Glucose produced by catalytic hydrolysis of cellulose is an important platform molecule for producing a variety of potential biobased fuels and chemicals. Catalysts such as mineral acids and enzymes have been intensively studied for cellulose hydrolysis. However, mineral acids show serious limitations concerning equipment corrosion, wastewater treatment and recyclability while enzymes have the issues such as high cost and thermal stability. Alternatively, solid acid catalysts are receiving increasing attention due to their high potential to overcome the limitations caused by conventional mineral acid catalysts but the slow mass transfer between the solid acid catalysts and cellulose as well as the absence of ideal binding sites on the surface of the solid acid catalysts are the key barriers to efficient cellulose hydrolysis. To bridge the gap, bio-inspired or bio-mimetic solid acid catalysts bearing both catalytic and binding sites are considered futuristic materials that possess added advantages over conventional solid catalysts, given their better substrate adsorption, high-temperature stability and easy recyclability. In this review, cellulase-mimetic solid acid catalysts featuring intrinsic structural characteristics such as binding and catalytic domains of cellulase are reviewed. The mechanism of cellulase-catalyzed cellulose hydrolysis, design of cellulase-mimetic catalysts, and the issues related to these cellulase-mimetic catalysts are critically discussed. Some potential research directions for designing more efficient catalysts for cellulose hydrolysis are proposed. We expect that this review can provide insights into the design and preparation of efficient bioinspired cellulase-mimetic catalysts for cellulose hydrolysis.


2021 ◽  
Vol 2 (4) ◽  
pp. 645-669
Author(s):  
Maksim Tyufekchiev ◽  
Jordan Finzel ◽  
Ziyang Zhang ◽  
Wenwen Yao ◽  
Stephanie Sontgerath ◽  
...  

A systematic and structure-agnostic method for identifying heterogeneous activity of solid acids for catalyzing cellulose hydrolysis is presented. The basis of the method is preparation of a supernatant liquid by exposing the solid acid to reaction conditions and subsequent use of the supernatant liquid as a cellulose hydrolysis catalyst to determine the effects of in situ generated homogeneous acid species. The method was applied to representative solid acid catalysts, including polymer-based, carbonaceous, inorganic, and bifunctional materials. In all cases, supernatant liquids produced from these catalysts exhibited catalytic activity for cellulose hydrolysis. Direct comparison of the activity of the solid acid catalysts and their supernatants could not provide unambiguous detection of heterogeneous catalysis. A reaction pathway kinetic model was used to evaluate potential false-negative interpretation of the supernatant liquid test and to differentiate heterogeneous from homogeneous effects on cellulose hydrolysis. Lastly, differences in the supernatant liquids obtained in the presence and absence of cellulose were evaluated to understand possibility of false-positive interpretation, using structural evidence from the used catalysts to gain a fresh understanding of reactant–catalyst interactions. While many solid acid catalysts have been proposed for cellulose hydrolysis, to our knowledge, this is the first effort to attempt to differentiate the effects of heterogeneous and homogeneous activities. The resulting supernatant liquid method should be used in all future attempts to design and develop solid acids for cellulose hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document