Biosurfactant production by Rhodococcus erythropolis grown on glycerol as sole carbon source

1996 ◽  
Vol 131 (1-3) ◽  
pp. 880-886
Author(s):  
Elisa M. P. Ciapina ◽  
Walber C. Melo ◽  
Lidia M. M. Santa Anna ◽  
Alexandre S. Santos ◽  
Denise M. G. Freire ◽  
...  
Author(s):  
Elisa M. P. Ciapina ◽  
Walber C. Melo ◽  
Lidia M. M. Santa Anna ◽  
Alexandre S. Santos ◽  
Denise M. G. Freire ◽  
...  

2006 ◽  
Vol 131 (1-3) ◽  
pp. 880-886 ◽  
Author(s):  
Elisa M. P. Ciapina ◽  
Walber C. Melo ◽  
Lidia M. M. Santa Anna ◽  
Alexandre S. Santos ◽  
Denise M. G. Freire ◽  
...  

2002 ◽  
Vol 57 (3-4) ◽  
pp. 356-360 ◽  
Author(s):  
Borjana K. Tuleva ◽  
George R. Ivanov ◽  
Nelly E. Christova

Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by the newly isolated and promising strain Pseudomonas putida 21BN. The biosurfactants were identified as rhamnolipids, the amphiphilic surface-active glycolipids usually secreted by Pseudomonas spp. Their production was observed when the strain was grown on soluble substrates, such as glucose or on poorly soluble substrates, such as hexadecane, reaching values of 1.2 g l-1. When grown on hexadecane as the sole carbon source the biosurfactant lowered the surface tension of the medium to 29 mN m-1 and formed stable and compact emulsions with emulsifying activity of 69%


2002 ◽  
Vol 46 (1-2) ◽  
pp. 519-524 ◽  
Author(s):  
K.R. Pagilla ◽  
A. Sood ◽  
H. Kim

Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and sparingly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 × CMC with hexadecane as the sole carbon source, and it was 5 × CMC with the mixture of hexadecane and acetate. Longer term growth studies (∼ 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.


2015 ◽  
Vol 81 (24) ◽  
pp. 8294-8306 ◽  
Author(s):  
Heba Khairy ◽  
Jan Hendrik Wübbeler ◽  
Alexander Steinbüchel

ABSTRACTFourRhodococcusspp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. BecauseRhodococcus erythropolisstrain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis ofR. erythropolisMI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity ofnoxRandnox. The interruption mutant generated,R. erythropolisMI2noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently,noxwas overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB).


2013 ◽  
Vol 726-731 ◽  
pp. 2424-2427
Author(s):  
Pei Pei Han ◽  
Ping Zhe Jiang ◽  
Xiang He Liu ◽  
Hong Yi Huang ◽  
Wen Qian Duan ◽  
...  

Four diesel fuel degrading microorganisms were isolated from soil and sea water from Crude Oil Terminal at Tianjin Port using diesel fuel as sole carbon source, and they all could degrade diesel fuel. The initial diesel fuel concentration in the culture medium was optimized and was 1.5 g/L. The ability of the four strains to degrade diesel was compared by spectrophotometer with the initial diesel concentration at 1.5 g/L. The results showed that the strain C1 had the highest degrading activity, which could degrade 32.59% of diesel in 7 days. The strain C1 was further identified by 16S rDNA sequence analysis as Rhodococcus erythropolis, and the phylogenetic tree of the strain C1 was constructed.


Author(s):  
Vivek Kumar Ranjan ◽  
Shriparna Mukherjee ◽  
Subarna Thakur ◽  
Krutika Gupta ◽  
Ranadhir Chakraborty

Sign in / Sign up

Export Citation Format

Share Document