Investigation by IR spectroscopy of the ageing properties of coatings from waste pyroxylin powder and halogen-containing polymers

2000 ◽  
Vol 83 (3) ◽  
pp. 104-105 ◽  
Author(s):  
I. Glavchev ◽  
R. Ganev ◽  
P. Novakov ◽  
M. Pankova

1992 ◽  
Vol 89 ◽  
pp. 525-532 ◽  
Author(s):  
H Mansuy ◽  
S Gautier ◽  
T Palermo


1984 ◽  
Vol 45 (C5) ◽  
pp. C5-167-C5-178
Author(s):  
A. J. Sievers ◽  
Z. Schlesinger ◽  
Y. J. Chabal


2015 ◽  
Vol 9 (4) ◽  
pp. 411-416 ◽  
Author(s):  
Ostap Ivashkiv ◽  
◽  
Piotr Bruzdziak ◽  
Olena Shyshchak ◽  
Jacek Namiesnik ◽  
...  


2018 ◽  
Author(s):  
Adrian Cernescu ◽  
Michał Szuwarzyński ◽  
Urszula Kwolek ◽  
Karol Wolski ◽  
Paweł Wydro ◽  
...  

<div><div>Scattering-mode Scanning Near-Field Optical Microscopy (sSNOM) allows one to obtain absorption spectra in the mid-IR region for samples as small as 20 nm in size. This configuration has made it possible to measure FTIR spectra of the protein complement of membranes. (Amenabar 2013) We now show that mid-IR sSNOM has the sensitivity required to measure spectra of phospholipids in individual bilayers in the spectral range 800 cm<sup>-1</sup>–1400 cm<sup>-1</sup>. We have observed the main absorption bands of the dipalmitoylphosphatidylcholine headgroups in this spectral region above noise level. We have also mapped the phosphate absorption band at 1070 cm<sup>-1</sup> simultaneously with the AFM topography. We have shown that we could achieve sufficient contrast to discriminate between single and multiple phospholipid bilayers and other structures, such as liposomes. This work opens the way to further research that uses nano-IR spectroscopy to describe the biochemistry of cell membranes and model systems.</div></div><div></div>



2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.



2020 ◽  
Vol 86 (7) ◽  
pp. 39-44
Author(s):  
K. V. Gogolinsky ◽  
A. E. Ivkin ◽  
V. V. Alekhnovich ◽  
A. Yu. Vasiliev ◽  
A. E. Tyurnina ◽  
...  

Thickness is one of the key indicators characterizing the quality and functional properties of coatings. Various indirect methods (electromagnetic, radiation, optical) most often used in practice to measure thickness are based on the functional dependence of a particular physical parameter of the system «base – coating» on the coating thickness. The sensitivity of these procedures to the certain properties of coatings imposes the main restriction to the accuracy of measurements. Therefore, the development and implementation of the approaches based on direct measurements of geometric parameters of the coating appears expedient. These methods often belong to the class of «destructive» and, in addition to measuring instruments, require the use of special equipment. To ensure the uniformity of measurements in the laboratory or technological control, these methods are isolated as a separate procedure (method) and must undergo metrological certification in accordance with GOST R 8.563–2009. We present implementation, metrological certification and practical application of the method for measuring thickness of coatings by crater-grinding method. The principles of technical implementation of test equipment, measurement procedure and calculation formulas are described. The results of evaluating the accuracy indicators of the proposed procedure by calculation and experimental methods are presented. In both cases, the relative error did not exceed 6%. The applicability of the developed technique is shown for a wide range of coating materials (from soft metals to superhard ceramics) of different thickness (with from units to hundreds of micrometers). Apart from the goals of process control and outgoing inspection, the method can be recommended as a reference measurement procedure for calibration of measures and adjusting samples for various types of thickness gauges.



Sign in / Sign up

Export Citation Format

Share Document