scholarly journals Bone marrow stromal cells and multi-lineage differentiation

2003 ◽  
Vol 28 (6) ◽  
pp. 651-651
Author(s):  
Paturu Kondaiah
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3697-3697
Author(s):  
Hirohito Minami ◽  
Kohshi Ohishi ◽  
Yoshiki Nakamori ◽  
Masahiro Masuya ◽  
Naoyuki Katayama

Abstract The regulatory mechanism of human lymphoid differentiation remains less defined. Here we examined how bone marrow stromal cells regulate human early lymphoid differentiation, using human telomerized bone marrow stromal cells that support the generation of CD7+CD56- early T and CD10+CD19+ proB cells from human hematopoietic progenitors. To examine the role of direct contact between hematopoietic progenitors and stromal cells in lymphopoiesis, cultures were performed by inhibiting the cell-cell contact with microporous insert or by incubating hematopoietic progenitors with conditioned medium collected from stromal cell cultures. The separation suppressed B-lineage differentiation to CD10+CD19+ cells, while the generation of CD7+ cells was not significantly influenced. The CD7+ cells generated with or without direct contact with stromal cells similarly had multipotent differentiation capacity for T, B, NK, granulocytic, and monocytic cells but not for erythroid cells in various culture conditions. On the other hand, even CD10+CD19- immature cells had more limited differentiation capacity for T, B, and monocytic cells in various culture conditions, and mostly differentiated toward CD10+CD19+ proB cells on the stromal cells. By time course analysis after coculture on the stromal cells, CD7+CD10- followed by CD10+CD19- and then CD10+CD19+ cells were developed. Some portion of CD7+CD10- and most of CD7-CD10+CD19- cells, upon recultured on stromal cells, differentiated toward CD10+CD19+ cells, but such B-lineage differentiation on the stromal cells was diminished by reculture with conditioned medium. ICAM-1 was expressed on the telomerized stromal cells. Coculture on stromal cells in the presence of LFA-1 neutralizing antibody that blocks the binding to ICAM-1 inhibited the differentiation to CD19+ proB cells. Our findings show that stromal cells support the generation of CD7+ multipotent lymphoid and CD10+ B-biased progenitors by producing soluble factors, but enhances B-lineage differentiation toward CD19+ proB cells in part via LFA-1-mediated direct cell-cell contact. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Author(s):  
Sylvia Thiele ◽  
Alexander Rauch ◽  
Jan P Tuckermann ◽  
Lorenz C Hofbauer ◽  
Martina Rauner

Author(s):  
Chuan-yi Hu ◽  
Juan Chen ◽  
Xin-hua Qin ◽  
Pan You ◽  
Jie Ma ◽  
...  

Abstract Background Bone metastasis is the leading cause of mortality and reduced quality of life in patients with metastatic prostate cancer (PCa). Long non-coding RNA activated by DNA damage (NORAD) has been observed to have an abnormal expression in various cancers. This article aimed to explore the molecular mechanism underlying the regulatory role of NORAD in bone metastasis of PCa. Methods NORAD expression in clinical PCa tissues and cell lines was detected with the application of qRT-PCR. Cancer cells were then transfected with plasmids expressing NORAD, after which Transwell assay and CCK-8 assay were carried out to detect proliferation, migration, and bone metastasis of PCa. NORAD downstream target molecules were screened through bioinformatics analysis, followed by further verification using dual luciferase assay. Extracellular vesicles (EVs) were labeled with PKH67 and interacted with bone marrow stromal cells. The gain- and loss-function method was applied to determine the internalization and secretion of PCa cells-derived EVs under the intervention of downstream target molecules or NORAD. Results PCa tissues and cell lines were observed to have a high expression of NORAD, particularly in tissues with bone metastasis. NORAD knockdown resulted in reduced secretion and internalization of EVs, and suppressed proliferation, migration, and bone metastasis of PCa cells. It was indicated that NORAD interacted with miR-541-3p, leading to the upregulation of PKM2. Forced expression of PKM2 promoted the transfer of PKH67-labeled EVs to bone marrow stromal cells. Conclusions NORAD might serve as a ceRNA of miR-541-3p to promote PKM2 expression, thereby enhancing the development of bone metastasis in PCa by promoting internalization and transfer of EVs of cancer cells, providing an insight into a novel treatment for the disorder.


Sign in / Sign up

Export Citation Format

Share Document