Journal of Experimental & Clinical Cancer Research
Latest Publications





Published By Springer (Biomed Central Ltd.)

1756-9966, 1756-9966

Jingjing Zhang ◽  
Yun Li ◽  
Hua Liu ◽  
Jiahui Zhang ◽  
Jie Wang ◽  

Abstract Background The development of lethal cancer metastasis depends on the dynamic interactions between cancer cells and the tumor microenvironment, both of which are embedded in the extracellular matrix (ECM). The acquisition of resistance to detachment-induced apoptosis, also known as anoikis, is a critical step in the metastatic cascade. Thus, a more in-depth and systematic analysis is needed to identify the key drivers of anoikis resistance. Methods Genome-wide CRISPR/Cas9 knockout screen was used to identify critical drivers of anoikis resistance using SKOV3 cell line and found protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) as a candidate. Quantitative real-time PCR (qRT-PCR) and immune-histochemistry (IHC) were used to measure differentially expressed PCMT1 in primary tissues and metastatic cancer tissues. PCMT1 knockdown/knockout and overexpression were performed to investigate the functional role of PCMT1 in vitro and in vivo. The expression and regulation of PCMT1 and integrin-FAK-Src pathway were evaluated using immunoprecipitation followed by mass spectrometry (IP-MS), western blot analysis and live cell imaging. Results We found that PCMT1 enhanced cell migration, adhesion, and spheroid formation in vitro. Interestingly, PCMT1 was released from ovarian cancer cells, and interacted with the ECM protein LAMB3, which binds to integrin and activates FAK-Src signaling to promote cancer progression. Strikingly, treatment with an antibody against extracellular PCMT1 effectively reduced ovarian cancer cell invasion and adhesion. Our in vivo results indicated that overexpression of PCMT1 led to increased ascites formation and distant metastasis, whereas knockout of PCMT1 had the opposite effect. Importantly, PCMT1 was highly expressed in late-stage metastatic tumors compared to early-stage primary tumors. Conclusions Through systematically identifying the drivers of anoikis resistance, we uncovered the contribution of PCMT1 to focal adhesion (FA) dynamics as well as cancer metastasis. Our study suggested that PCMT1 has the potential to be a therapeutic target in metastatic ovarian cancer.

Tao Yang ◽  
Zhengdong Deng ◽  
Lei Xu ◽  
Xiangyu Li ◽  
Tan Yang ◽  

Abstract Background Recent data indicated that macrophages may mutually interact with cancer cells to promote tumor progression and chemoresistance, but the interaction in cholangiocarcinoma (CCA) is obscure. Methods 10x Genomics single-cell sequencing technology was used to identified the role of macrophages in CCA. Then, we measured the expression and prognostic role of macrophage markers and aPKCɩ in 70 human CCA tissues. Moreover, we constructed monocyte-derived macrophages (MDMs) generated from peripheral blood monocytes (PBMCs) and polarized them into M1/M2 macrophages. A co-culture assay of the human CCA cell lines (TFK-1, EGI-1) and differentiated PBMCs-macrophages was established, and functional studies in vitro and in vivo was performed to explore the interaction between cancer cells and M2 macrophages. Furthermore, we established the cationic liposome-mediated co-delivery of gemcitabine and aPKCɩ-siRNA and detect the antitumor effects in CCA. Results M2 macrophage showed tumor-promoting properties in CCA. High levels of aPKCɩ expression and M2 macrophage infiltration were associated with metastasis and poor prognosis in CCA patients. Moreover, CCA patients with low M2 macrophages infiltration or low aPKCɩ expression benefited from postoperative gemcitabine-based chemotherapy. Further studies showed that M2 macrophages-derived TGFβ1 induced epithelial-mesenchymal transition (EMT) and gemcitabine resistance in CCA cells through aPKCɩ-mediated NF-κB signaling pathway. Reciprocally, CCL5 was secreted more by CCA cells undergoing aPKCɩ-induced EMT and consequently modulated macrophage recruitment and polarization. Furthermore, the cationic liposome-mediated co-delivery of GEM and aPKCɩ-siRNA significantly inhibited macrophages infiltration and CCA progression. Conclusion our study demonstrates the role of Macrophages-aPKCɩ-CCL5 Feedback Loop in CCA, and proposes a novel therapeutic strategy of aPKCɩ-siRNA and GEM co-delivered by liposomes for CCA.

Feng Qiu ◽  
Qiuchen Liu ◽  
Yanfu Xia ◽  
Hengxi Jin ◽  
Yuxin Lin ◽  

Abstract Background Epithelial-mesenchymal transition (EMT) has been associated with the angiogenesis and oncogenic phenotypes of multiple malignant tumors including bladder cancer (BCa). Circular RNAs (circRNAs) are recognized as crucial regulators in the EMT. This study aims to illustrate the possible role of circular RNA_0000658 (circ_0000658) in BCa and the underlying molecular mechanism. Methods The expression of circ_0000658, microRNA (miR)-498, and high mobility group AT-hook 2 (HMGA2) was assessed in cancer and adjacent normal tissue collected from BCa patients and human BCa cell lines (MGH-U3, T24, 5637 and SW780). BCa cells were transduced with a series of overexpression or shRNA plasmids to clarify the function of circ_0000658 and miR-498 on the oncogenic phenotypes and EMT of BCa cells. Further, we established nude mice xenografted with BCa cells to validate the roles of circ_0000658 on tumor growth in vivo. Results Circ_0000658 was highly expressed in BCa tissue samples and cell lines, which indicated a poor prognosis of BCa patients. Circ_0000658 competitively bound to miR-498 and thus restricted miR-498 expression. Meanwhile, circ_0000658 weakened the binding of miR-498 to the target gene HMGA2 and upregulated the HMGA2 expression. Circ_0000658 elevation or miR-498 knockdown augmented oncogenic phenotypes and EMT of BCa cells, corresponding to a reduction in the expression of β-catenin and E-cadherin as well as an increase in the expression of N-cadherin, Slug, Snail, ZEB1 and Twist. Inhibition of HMGA2 reversed the effects of circ_0000658 overexpression on tumor growth in vivo. Conclusion Altogether, our study uncovered the tumor-promoting role of circ_0000658 in BCa via the miR-498/HMGA2 axis.

Carmela Ferri ◽  
Anna Di Biase ◽  
Marco Bocchetti ◽  
Silvia Zappavigna ◽  
Sarah Wagner ◽  

Abstract Background The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). Methods Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. Results Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. Conclusions We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.

Kausik Bishayee ◽  
Khadija Habib ◽  
Uddin Md. Nazim ◽  
Jieun Kang ◽  
Aniko Szabo ◽  

Abstract Background Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. Methods RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. Results In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. Conclusions HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis.

Jiashu Pan ◽  
Feng Liu ◽  
Xiaoli Xiao ◽  
Ruohui Xu ◽  
Liang Dai ◽  

Abstract Background Colorectal carcinoma (CRC) is the third most common cancer and second most common cause of cancer-related deaths worldwide. Ribonucleic acid (RNA) N6-methyladnosine (m6A) and methyltransferase-like 3 (METTL3) play key roles in cancer progression. However, the roles of m6A and METTL3 in CRC progression require further clarification. Methods Adenoma and CRC samples were examined to detect m6A and METTL3 levels, and tissue microarrays were performed to evaluate the association of m6A and METTL3 levels with the survival of patients with CRC. The biological functions of METTL3 were investigated through cell counting kit-8, wound healing, and transwell assays. M6A epitranscriptomic microarray, methylated RNA immunoprecipitation-qPCR, RNA stability, luciferase reporter, and RNA immunoprecipitation assays were performed to explore the mechanism of METTL3 in CRC progression. Results M6A and METTL3 levels were substantially elevated in CRC tissues, and patients with CRC with a high m6A or METTL3 levels exhibited shorter overall survival. METTL3 knockdown substantially inhibited the proliferation, migration, and invasion of CRC cells. An m6A epitranscriptomic microarray revealed that the cell polarity regulator Crumbs3 (CRB3) was the downstream target of METTL3. METTL3 knockdown substantially reduced the m6A level of CRB3, and inhibited the degradation of CRB3 mRNA to increase CRB3 expression. Luciferase reporter assays also showed that the transcriptional level of wild-type CRB3 significantly increased after METTL3 knockdown but not its level of variation. Knockdown of YT521-B homology domain–containing family protein 2 (YTHDF2) substantially increased CRB3 expression. RNA immunoprecipitation assays also verified the direct interaction between the YTHDF2 and CRB3 mRNA, and this direct interaction was impaired after METTL3 inhibition. In addition, CRB3 knockdown significantly promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, METTL3 knockdown activated the Hippo pathway and reduced nuclear localization of Yes1-associated transcriptional regulator, and the effects were reversed by CRB3 knockdown. Conclusions M6A and METTL3 levels were substantially elevated in CRC tissues relative to normal tissues. Patients with CRC with high m6A or METTL3 levels exhibited shorter overall survival, and METTL3 promoted CRC progression. Mechanistically, METTL3 regulated the progression of CRC by regulating the m6A–CRB3–Hippo pathway.

Shuohui Dong ◽  
Shuo Liang ◽  
Zhiqiang Cheng ◽  
Xiang Zhang ◽  
Li Luo ◽  

Abstract Background Acquired resistance of 5-fluorouracil (5-FU) remains a clinical challenge in colorectal cancer (CRC), and efforts to develop targeted agents to reduce resistance have not yielded success. Metabolic reprogramming is a key cancer hallmark and confers several tumor phenotypes including chemoresistance. Glucose metabolic reprogramming events of 5-FU resistance in CRC has not been evaluated, and whether abnormal glucose metabolism could impart 5-FU resistance in CRC is also poorly defined. Methods Three separate acquired 5-FU resistance CRC cell line models were generated, and glucose metabolism was assessed by measuring glucose and lactate utilization, RNA and protein expressions of glucose metabolism-related enzymes and changes of intermediate metabolites of glucose metabolite pool. The protein levels of hypoxia inducible factor 1α (HIF-1α) in primary tumors and circulating tumor cells of CRC patients were detected by immunohistochemistry and immunofluorescence. Stable HIF1A knockdown in cell models was established with a lentiviral system. The influence of both HIF1A gene knockdown and pharmacological inhibition on 5-FU resistance in CRC was evaluated in cell models in vivo and in vitro. Results The abnormality of glucose metabolism in 5-FU-resistant CRC were described in detail. The enhanced glycolysis and pentose phosphate pathway in CRC were associated with increased HIF-1α expression. HIF-1α-induced glucose metabolic reprogramming imparted 5-FU resistance in CRC. HIF-1α showed enhanced expression in 5-FU-resistant CRC cell lines and clinical specimens, and increased HIF-1α levels were associated with failure of fluorouracil analog-based chemotherapy in CRC patients and poor survival. Upregulation of HIF-1α in 5-FU-resistant CRC occurred through non-oxygen-dependent mechanisms of reactive oxygen species-mediated activation of PI3K/Akt signaling and aberrant activation of β-catenin in the nucleus. Both HIF-1α gene knock-down and pharmacological inhibition restored the sensitivity of CRC to 5-FU. Conclusions HIF-1α is a potential biomarker for 5-FU-resistant CRC, and targeting HIF-1a in combination with 5-FU may represent an effective therapeutic strategy in 5-FU-resistant CRC.

Lili Han ◽  
Chen Huang ◽  
Xiaofei Wang ◽  
Dongdong Tong

Abstract Background Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear. Methods HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models. Results GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway. Conclusion This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis.

Maria Saliakoura ◽  
Matteo Rossi Sebastiano ◽  
Ioanna Nikdima ◽  
Chiara Pozzato ◽  
Georgia Konstantinidou

Abstract Background KRAS is the predominant oncogene mutated in pancreatic ductal adenocarcinoma (PDAC), the fourth cause of cancer-related deaths worldwide. Mutant KRAS-driven tumors are metabolically programmed to support their growth and survival, which can be used to identify metabolic vulnerabilities. In the present study, we aimed to understand the role of extracellularly derived fatty acids in KRAS-driven pancreatic cancer. Methods To assess the dependence of PDAC cells on extracellular fatty acids we employed delipidated serum or RNAi-mediated suppression of ACSL3 (to inhibit the activation and cellular retention of extracellular fatty acids) followed by cell proliferation assays, qPCR, apoptosis assays, immunoblots and fluorescence microscopy experiments. To assess autophagy in vivo, we employed the KrasG12D/+;p53flox/flox;Pdx1-CreERT2 (KPC) mice crossed with Acsl3 knockout mice, and to assess the efficacy of the combination therapy of ACSL3 and autophagy inhibition we used xenografted human cancer cell-derived tumors in immunocompromised mice. Results Here we show that depletion of extracellularly derived lipids either by serum lipid restriction or suppression of ACSL3, triggers autophagy, a process that protects PDAC cells from the reduction of bioenergetic intermediates. Combined extracellular lipid deprivation and autophagy inhibition exhibits anti-proliferative and pro-apoptotic effects against PDAC cell lines in vitro and promotes suppression of xenografted human pancreatic cancer cell-derived tumors in mice. Therefore, we propose lipid deprivation and autophagy blockade as a potential co-targeting strategy for PDAC treatment. Conclusions Our work unravels a central role of extracellular lipid supply in ensuring fatty acid provision in cancer cells, unmasking a previously unappreciated metabolic vulnerability of PDAC cells.

Mengxuan Zhu ◽  
Pengfei Zhang ◽  
Shan Yu ◽  
Cheng Tang ◽  
Yan Wang ◽  

Abstract Background Chemoresistance is a main obstacle in gastric cancer (GC) treatment, but its molecular mechanism still needs to be elucidated. Here, we aim to reveal the underlying mechanisms of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resistance in GC. Methods We performed RNA sequencing (RNA-seq) on samples from patients who were resistant or sensitive to nab-paclitaxel, and identified Zinc Finger Protein 64 (ZFP64) as critical for nab-paclitaxel resistance in GC. CCK8, flow cytometry, TUNEL staining, sphere formation assays were performed to investigate the effects of ZFP64 in vitro, while subcutaneous tumor formation models were established in nude mice or humanized mice to evaluate the biological roles of ZFP64 in vivo. Chromatin immunoprecipitation sequencing (CHIP-seq) and double-luciferase reporter gene assay were conducted to reveal the underlying mechanism of ZFP64. Results ZFP64 overexpression was linked with aggressive phenotypes, nab-paclitaxel resistance and served as an independent prognostic factor in GC. As a transcription factor, ZFP64 directly binds to Galectin-1 (GAL-1) promoter and promoted GAL-1 transcription, thus inducing stem-cell like phenotypes and immunosuppressive microenvironment in GC. Importantly, compared to treatment with nab-paclitaxel alone, nab-paclitaxel plus GAL-1 blockade significantly enhanced the anti-tumor effect in mouse models, particularly in humanized mice. Conclusions Our data support a pivotal role for ZFP64 in GC progression by simultaneously promoting cellular chemotherapy resistance and tumor immunosuppression. Treatment with the combination of nab-paclitaxel and a GAL-1 inhibitor might benefit a subgroup of GC patients.

Sign in / Sign up

Export Citation Format

Share Document