Nonlinear noncoercive operator equations and their regularization in banach spaces

1997 ◽  
Vol 33 (3) ◽  
pp. 409-415
Author(s):  
D. E. Akbarov
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hua Su

In this paper, by using the partial order method, the existence and uniqueness of a solution for systems of a class of abstract operator equations in Banach spaces are discussed. The result obtained in this paper improves and unifies many recent results. Two applications to the system of nonlinear differential equations and the systems of nonlinear differential equations in Banach spaces are given, and the unique solution and interactive sequences which converge the unique solution and the error estimation are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yonghui Ling ◽  
Xiubin Xu ◽  
Shaohua Yu

The present paper is concerned with the semilocal as well as the local convergence problems of Newton-Steffensen’s method to solve nonlinear operator equations in Banach spaces. Under the assumption that the second derivative of the operator satisfies -condition, the convergence criterion and convergence ball for Newton-Steffensen’s method are established.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wen-Xia Wang ◽  
Xi-Lan Liu ◽  
Piao-Piao Shi

A class of nonlinear sum operator equations with a parameter on order Banach spaces were considered. The existence and uniqueness of positive solutions for this kind of operator equations and the dependence of solutions on the parameter have been obtained by using the properties of cone and nonlinear analysis methods. The critical value of the parameter was estimated. Further, the application to some nonlinear three-point boundary value problems was given to show the significance of the discussion.


1992 ◽  
Vol 15 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Antonios Karamolegos ◽  
Dimitrios Kravvaritis

In this paper we give some new existence theorems for nonlinear random equations and inequalities involving operators of monotone type in Banach spaces. A random Hammerstein integral equation is also studied. In order to obtain random solutions we use some results from the existing deterministic theory as well as from the theory of measurable multifunctions and, in particular, the measurable selection theorems of Kuratowski/Ryll-Nardzewski and of Saint-Beuve.


Sign in / Sign up

Export Citation Format

Share Document