A uniqueness theorem for finitely additive invariant measures on a compact homogeneous space

1981 ◽  
Vol 30 (3) ◽  
pp. 341-344 ◽  
Author(s):  
Rolf Schneider

2018 ◽  
Vol 70 (1) ◽  
pp. 97-116 ◽  
Author(s):  
Arash Ghaani Farashahi

AbstractThis paper introduces a class of abstract linear representations on Banach convolution function algebras over homogeneous spaces of compact groups. LetGbe a compact group andHa closed subgroup ofG. Letμbe the normalizedG-invariant measure over the compact homogeneous spaceG/Hassociated with Weil's formula and. We then present a structured class of abstract linear representations of the Banach convolution function algebrasLp(G/H,μ).



2020 ◽  
Vol 126 (3) ◽  
pp. 540-558
Author(s):  
Jacopo Bassi

Dynamical conditions that guarantee stability for discrete transformation group $C^*$-algebras are determined. The results are applied to the case of some discrete subgroups of $\operatorname{SL} (2,\mathbb{R} )$ acting on the punctured plane by means of matrix multiplication of vectors. In the case of cocompact subgroups, further properties of such crossed products are deduced from properties of the $C^*$-algebra associated to the horocycle flow on the corresponding compact homogeneous space of $\operatorname{SL} (2,\mathbb{R} )$.



1968 ◽  
Vol 5 (01) ◽  
pp. 177-195 ◽  
Author(s):  
R. J. Beran

This paper applies the invariance principle to the problem of testing a distribution on a compact homogeneous space for uniformity. The notion of using a reduction by invariance in such a situation is due to Ajne[1], who considers tests invariant under rotation on a circle. In his paper, he derives the distribution of the maximal invariant and gives the general form of the most powerful invariant test for uniformity on the circle.



1968 ◽  
Vol 5 (1) ◽  
pp. 177-195 ◽  
Author(s):  
R. J. Beran

This paper applies the invariance principle to the problem of testing a distribution on a compact homogeneous space for uniformity. The notion of using a reduction by invariance in such a situation is due to Ajne[1], who considers tests invariant under rotation on a circle. In his paper, he derives the distribution of the maximal invariant and gives the general form of the most powerful invariant test for uniformity on the circle.



1995 ◽  
Vol 15 (6) ◽  
pp. 1207-1210 ◽  
Author(s):  
Shahar Mozes

AbstractIt is shown that a probability measure on a homogeneous space Γ\G which is invariant under a subgroup H < G which is epimorphic in a subgroup L < G is invariant under L. When L = G we obtain a subgroup H such that for any lattice Γ < G its action on Γ\G is uniquely ergodic.







Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.



Sign in / Sign up

Export Citation Format

Share Document