scholarly journals Inactivation of carboxypeptidase Y by mutational removal of the putative essential histidyl residue

1989 ◽  
Vol 54 (5) ◽  
pp. 165-171 ◽  
Author(s):  
Lene M. Bech ◽  
Klaus Breddam
Keyword(s):  
1991 ◽  
Vol 266 (31) ◽  
pp. 20823-20827
Author(s):  
W.S. Lewis ◽  
S.M. Schuster

Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 445-458 ◽  
Author(s):  
Amy D Roeder ◽  
Janet M Shaw

Abstract We have examined the partitioning of the yeast vacuole during meiotic division. In pulse-chase experiments, vacuoles labeled with the lumenal ade2 fluorophore or the membrane-specific dye FM 4-64 were not inherited by haploid spores. Instead, these fluorescent markers were excluded from spores and trapped between the spore cell walls and the ascus. Serial optical sections using a confocal microscope confirmed that spores did not inherit detectable amounts of fluorescently labeled vacuoles. Moreover, indirect immunofluorescence studies established that an endogenous vacuolar membrane protein, alkaline phosphatase, and a soluable vacuolar protease, carboxypeptidase Y, were also detected outside spores after meiotic division. Spores that did not inherit ade2- or FM 4-64-labeled vacuoles did generate an organelle that could be visualized by subsequent staining with vacuole-specific fluorophores. These data contrast with genetic evidence that a soluble vacuolar protease is inherited by spores. When the partitioning of both types of markers was examined in sporulating cultures, the vacuolar protease activity was inherited by spores while fluorescently labeled vacuoles were largely excluded from spores. Our results indicate that the majority of the diploid vacuole, both soluble contents and membrane-bound components, are excluded from spores formed during meiotic division.


FEBS Open Bio ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1337-1343 ◽  
Author(s):  
Mai Makino ◽  
Takehiko Sahara ◽  
Naoki Morita ◽  
Hiroshi Ueno

2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


2005 ◽  
Vol 169 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Eric D. Spear ◽  
Davis T.W. Ng

The endoplasmic reticulum (ER) maintains an environment essential for secretory protein folding. Consequently, the premature transport of polypeptides would be harmful to the cell. To avert this scenario, mechanisms collectively termed “ER quality control” prevent the transport of nascent polypeptides until they properly fold. Irreversibly misfolded molecules are sorted for disposal by the ER-associated degradation (ERAD) pathway. To better understand the relationship between quality control and ERAD, we studied a new misfolded variant of carboxypeptidase Y (CPY). The molecule was recognized and retained by ER quality control but failed to enter the ERAD pathway. Systematic analysis revealed that a single, specific N-linked glycan of CPY was required for sorting into the pathway. The determinant is dependent on the putative lectin-like receptor Htm1/Mnl1p. The discovery of a similar signal in misfolded proteinase A supported the generality of the mechanism. These studies show that specific signals embedded in glycoproteins can direct their degradation if they fail to fold.


1983 ◽  
Vol 50 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Paul A. Grieve ◽  
Barry J. Kitchen ◽  
John R. Dulley ◽  
John Bartley

SUMMARYAn extract ofKluyveromyces lactis416 and a β-galactosidase preparation (Maxilact 40000) contaminated with proteinase, showed similar pH profiles of caseinolytic activity. Similar modes of casein hydrolysis (κ-, > αs-, ≥ β-) were observed at pH 5·0 (the pH of Cheddar cheese), without detection of bitterness. The contaminated Maxilact preparation contained similar proteinase types to those detected in an autolysate ofK. lactis. Both the autolysate and the Maxilact preparation contained acid endopeptidase (proteinase A), serine endopeptidase (proteinase B) and serine exopeptidase (carboxypeptidase Y) activities. Some aminopeptidase activity was also detected in both preparations. There were some differences in apparent molecular weight and charge properties between proteinase A and B and carboxypeptidase Y from the 2 proteinase sources.


1974 ◽  
Vol 60 (3) ◽  
pp. 1051-1057 ◽  
Author(s):  
Heidrun Matern ◽  
Heinrich Betz ◽  
Helmut Holzer
Keyword(s):  

Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 833-841
Author(s):  
Yu Jiang ◽  
Al Scarpa ◽  
Li Zhang ◽  
Shelly Stone ◽  
Ed Feliciano ◽  
...  

Abstract The BET3 gene in the yeast Saccharomyces cerevisiae encodes a 22-kD hydrophilic protein that is required for vesicular transport between the ER and Golgi complex. To gain insight into the role of Bet3p, we screened for genes that suppress the growth defect of the temperature-sensitive bet3 mutant at 34°. This high copy suppressor screen resulted in the isolation of a new gene, called BET5. BET5 encodes an essential 18-kD hydrophilic protein that in high copy allows growth of the bet3-1 mutant, but not other ER accumulating mutants. This strong and specific suppression is consistent with the fact that Bet3p and Bet5p are members of the same complex. Using PCR mutagenesis, we generated a temperature-sensitive mutation in BET5 (bet5-1) that blocks the transport of carboxypeptidase Y to the vacuole and prevents secretion of the yeast pheromone α-factor at 37°. The precursor forms of these proteins that accumulate in this mutant are indicative of a block in membrane traffic between the ER and Golgi apparatus. High copy suppressors of the bet5-1 mutant include several genes whose products are required for ER-to-Golgi transport (BET1, SEC22, USO1 and DSS4) and the maintenance of the Golgi (ANP1). These findings support the hypothesis that Bet5p acts in conjunction with Bet3p to mediate a late stage in ER-to-Golgi transport. The identification of mammalian homologues of Bet3p and Bet5p implies that the Bet3p/Bet5p complex is highly conserved in evolution.


1991 ◽  
Vol 11 (6) ◽  
pp. 2980-2993
Author(s):  
R Ossig ◽  
C Dascher ◽  
H H Trepte ◽  
H D Schmitt ◽  
D Gallwitz

It has been shown previously that defects in the essential GTP-binding protein, Ypt1p, lead to a block in protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in the yeast Saccharomyces cerevisiae. Here we report that four newly discovered suppressors of YPT1 deletion (SLY1-20, SLY2, SLY12, and SLY41) to a varying degree restore ER-to-Golgi transport defects in cells lacking Ypt1p. These suppressors also partially complement the sec21-1 and sec22-3 mutants which lead to a defect early in the secretory pathway. Sly1p-depleted cells, as well as a conditional lethal sly2 null mutant at nonpermissive temperatures, accumulate ER membranes and core-glycosylated invertase and carboxypeptidase Y. The sly2 null mutant under restrictive conditions (37 degrees C) can be rescued by the multicopy suppressor SLY12 and the single-copy suppressor SLY1-20, indicating that these three SLY genes functionally interact. Sly2p is shown to be an integral membrane protein.


Sign in / Sign up

Export Citation Format

Share Document