scholarly journals ADP-Ribosylation Factor (ARF) Interaction Is Not Sufficient for Yeast GGA Protein Function or Localization

2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.

2002 ◽  
Vol 115 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Chun-Fang Huang ◽  
Chien-Cheng Chen ◽  
Luh Tung ◽  
Leh-Miauh Buu ◽  
Fang-Jen S. Lee

Membrane trafficking is regulated, in part, by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family. ARF function depends on the controlled binding and hydrolysis of GTP. In vitro, the GTPase activity of yeast ARF proteins can be stimulated by Gcs1p. Although Gcs1p was implicated in the regulation of retrograde transport from the Golgi to the ER and in actin cytoskeletal organization, its intracellular functions and distribution remain to be established. Following subcellular fractionation of yeast grown in rich medium, Gcs1p was localized in denser fractions than it was in cells grown in minimal medium. In yeast grown in rich or minimal medium, Gcs1p was distributed over the cytoplasm in a fine punctate pattern with more concentrated staining in the perinuclear regions. Overexpressed Gcs1p in yeast was localized partially with mitochondria and partially in perinuclear structures close to mitochondria. The Gcs1p PH-domain was required for localization in mitochondria but not for the perinuclear region. Transport of carboxypeptidase Y and invertase was not significantly altered by disruption of the gcs1 gene. This mutation did, however, reduce mitochondrial lateral distribution and branching when yeast were grown in rich medium. In yeast overexpressing Gcs1p, mitochondrial morphology was aberrant, with unbranched tubules and large spherical structures. We suggest that Gcs1p may be involved in the maintenance of mitochondrial morphology, possibly through organizing the actin cytoskeleton in Saccharomyces.


2005 ◽  
Vol 79 (11) ◽  
pp. 7207-7216 ◽  
Author(s):  
George A. Belov ◽  
Mark H. Fogg ◽  
Ellie Ehrenfeld

ABSTRACT Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication.


2005 ◽  
Vol 187 (3) ◽  
pp. 829-839 ◽  
Author(s):  
Poney Chiang ◽  
Marc Habash ◽  
Lori L. Burrows

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa expresses polar type IV pili (TFP), which are responsible for adhesion to various materials and twitching motility on surfaces. Twitching occurs by alternate extension and retraction of TFP, which arise from assembly and disassembly of pilin subunits at the base of the pilus. The ATPase PilB promotes pilin assembly, while the ATPase PilT or PilU or both promote pilin dissociation. Fluorescent fusions to two of the three ATPases (PilT and PilU) were functional, as shown by complementation of the corresponding mutants. PilB and PilT fusions localized to both poles, while PilU fusions localized only to the piliated pole. To identify the portion of the ATPases required for localization, sequential C-terminal deletions of PilT and PilU were generated. The conserved His and Walker B boxes were dispensable for polar localization but were required for twitching motility, showing that localization and function could be uncoupled. Truncated fusions that retained polar localization maintained their distinctive distribution patterns. To dissect the cellular factors involved in establishing polarity, fusion protein localization was monitored with a panel of TFP mutants. The localization of yellow fluorescent protein (YFP)-PilT and YFP-PilU was independent of the subunit PilA, other TFP ATPases, and TFP-associated proteins previously shown to be associated with the membrane or exhibiting polar localization. In contrast, YFP-PilB exhibited diffuse cytoplasmic localization in a pilC mutant, suggesting that PilC is required for polar localization of PilB. Finally, localization studies performed with fluorescent ATPase chimeras of PilT and PilU demonstrated that information responsible for the characteristic localization patterns of the ATPases likely resides in their N termini.


2006 ◽  
Vol 97 (9) ◽  
pp. 801-806 ◽  
Author(s):  
Kenji Tanabe ◽  
Shunsuke Kon ◽  
Waka Natsume ◽  
Tetsuo Torii ◽  
Toshio Watanabe ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1131 ◽  
Author(s):  
Purvi C. Trivedi ◽  
Jordan J. Bartlett ◽  
Thomas Pulinilkunnil

Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.


1996 ◽  
Vol 74 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Margarida O. Krause

This review represents a synthesis of the work of the author and her collaborators through 40 years of research aimed at an understanding of chromatin composition and functional arrangement. It describes the progressive experimental stages, starting with autoradiography and protein analysis and continuing on to a more functional approach testing the template properties of intact nuclei, as well as nuclei depleted of, or reconstituted with, defined fractions extracted from the chromatin of other cell lines or tissues. As new questions were raised at each phase of these studies, the investigation was shifted from chromosomal proteins to the role of a small RNA that coextracted with one protein fraction and whose properties suggested a transcription-activating function. The active RNA was identified as a class in RNA, designated as 7 SK. Its properties suggested a role in the activation of two oncogenes, the SV 40 T-antigen and the mammalian c-myc gene. A detailed analysis of the c-myc gene expression during transformation induction in temperature-sensitive mammalian cells finally culminated in in vivo evidence for a role of 7 SK in c-myc deregulation, using cells transfected with antisense oligonucleotides to block 7 SK activity. This was followed by an investigation of promoter targeting by 7 SK RNP using electrophoretic mobility shift assays with whole or 7 SK-depleted cell extracts. Taken together, these studies indicate that 7 SK RNP participates in transformation-dependent deregulation of the c-myc gene by activation of two c-myc minor promoters. The implications of these findings are discussed.Key words: chromatin structure, histones, nonhistones, 7 SK RNA, the c-myc gene, transcription regulation, SV 40, transformation.


2016 ◽  
Vol 215 (4) ◽  
pp. 575-590 ◽  
Author(s):  
Christine J. Smoyer ◽  
Santharam S. Katta ◽  
Jennifer M. Gardner ◽  
Lynn Stoltz ◽  
Scott McCroskey ◽  
...  

Understanding the protein composition of the inner nuclear membrane (INM) is fundamental to elucidating its role in normal nuclear function and in disease; however, few tools exist to examine the INM in living cells, and the INM-specific proteome remains poorly characterized. Here, we adapted split green fluorescent protein (split-GFP) to systematically localize known and predicted integral membrane proteins in Saccharomyces cerevisiae to the INM as opposed to the outer nuclear membrane. Our data suggest that components of the endoplasmic reticulum (ER) as well as other organelles are able to access the INM, particularly if they contain a small extraluminal domain. By pairing split-GFP with fluorescence correlation spectroscopy, we compared the composition of complexes at the INM and ER, finding that at least one is unique: Sbh2, but not Sbh1, has access to the INM. Collectively, our work provides a comprehensive analysis of transmembrane protein localization to the INM and paves the way for further research into INM composition and function.


Sign in / Sign up

Export Citation Format

Share Document