Combined Streamline Upwind Petrov Galerkin method and segregated finite element algorithm for conjugate heat transfer problems

2006 ◽  
Vol 20 (10) ◽  
pp. 1741-1752 ◽  
Author(s):  
Atipong Malatip ◽  
Niphon Wansophark ◽  
Pramote Dechaumphai
2005 ◽  
Vol 21 (5) ◽  
pp. 436-443 ◽  
Author(s):  
Niphon Wansophark ◽  
Atipong Malatip ◽  
Pramote Dechaumphai

2014 ◽  
Vol 24 (8) ◽  
pp. 1888-1905 ◽  
Author(s):  
M.M. Rahman ◽  
Hakan Oztop ◽  
S. Mekhilef ◽  
R. Saidur ◽  
A. Chamkha ◽  
...  

Purpose – The purpose of this paper is to examine the effects of thick wall parameters of a cavity on combined convection in a channel. In other words, conjugate heat transfer is solved. Design/methodology/approach – Galerkin weighted residual finite element method is used to solve the governing equations of mixed convection. Findings – The streamlines, isotherms, local and average Nusselt numbers are obtained and presented for different parameters. It is found heat transfer is an increasing function of dimensionless thermal conductivity ratio. Originality/value – The literature does not have mixed convection and conjugate heat transfer problem in a channel with thick walled cavity.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Estaner Claro Romão

This paper proposes an efficient alternative to construction of the linear system coming from a solution via the Finite Element Method that is able to significantly decrease the time of construction of this system. From the presentation of the methodology used and a numerical application it will be clear that the purpose of this work is to be able to decrease 6-7 times (on average) the linear system building time.


Author(s):  
R. V. Zhalnin ◽  
V. F. Masyagin ◽  
E. E. Peskova

The present paper is devoted to the construction of a parallel computational algorithm for solving convective heat transfer problems using the discontinuous Galerkin method on unstructured staggered grids. The computational algorithm is implemented on the basis of MPI parallel computing technology. A special feature of the algorithm is that auxiliary variables that occur when the diffusion terms are approximated by the discontinuous Galerkin method are not involved in interprocessor exchange. The developed parallel algorithm is applied to modelling of temperature dynamics in formation with a vertical injection well and hydraulic fracturing. The paper presents the results of a computational experiment and estimates the effectiveness of a parallel algorithm.


2011 ◽  
Vol 52-54 ◽  
pp. 511-516 ◽  
Author(s):  
Arup Kumar Borah

In this paper we have studied the streamfunction-vorticity formulation can be advantageously used to analyse steady as well as unsteady incompressible flow and heat transfer problems, since it allows the elimination of pressure from the governing equations and automatically satisfies the continuity constraint. On the other hand, the specification of boundary conditions for the streamfunction-vorticity is not easy and a poor evaluation of these conditions may lead to serious difficulties in obtaining a converged solution. The main issue addressed in this paper is the specification in the boundary conditions in the context of finite element of discretization, but approach utilized can be easily extended to finite volume computations.


1980 ◽  
Author(s):  
F. Bisshopp ◽  
R. B. Caswell ◽  
M. E. Michaud

Sign in / Sign up

Export Citation Format

Share Document