The local integrability condition for wavelet frames

2006 ◽  
Vol 16 (1) ◽  
pp. 155-166 ◽  
Author(s):  
Gitta Kutyniok
2005 ◽  
Vol 12 (4) ◽  
pp. 637-658
Author(s):  
Dorothee D. Haroske ◽  
Erika Tamási

Abstract This paper deals with wavelet frames in anisotropic Besov spaces , 𝑠 ∈ ℝ, 0 < 𝑝, 𝑞 ≤ ∞, and 𝑎 = (𝑎1, . . . , 𝑎𝑛) is an anisotropy, with 𝑎𝑖 > 0, 𝑖 = 1, . . . , 𝑛, 𝑎1 + . . . + 𝑎𝑛 = 𝑛. We present sub-atomic and wavelet decompositions for a large class of distributions. To some extent our results can be regarded as anisotropic counterparts of those recently obtained in [Triebel, Studia Math. 154: 59–88, 2003].


2007 ◽  
Vol 14 (3) ◽  
pp. 543-564
Author(s):  
Yuri G. Reshetnyak

Abstract In the space , 𝑛-dimensional surfaces are considered having the parametrizations which are functions of the Sobolev class with 𝑝 > 𝑛. The first and the second fundamental tensor are defined. The Peterson–Codazzi equations for such functions are understood in some generalized sense. It is proved that if the first and the second fundamental tensor of one surface are close to the first and, respectively, to the second fundamental tensor of the other surface, then these surfaces will be close up to the motion of the space . A difference between the fundamental tensors and the nearness of the surfaces are measured with the help of suitable 𝑊-norms. The proofs are based on a generalization of Frobenius' theorem about completely integrable systems of the differential equations which was proved by Yu. E. Borovskiĭ. The integral representations of functions by differential operators with complete integrability condition are used, which were elaborated by the author in his other works.


2018 ◽  
Vol 23 (7-8) ◽  
pp. 933-947
Author(s):  
Shogo Yamanaka

2019 ◽  
Vol 21 (07) ◽  
pp. 1850053 ◽  
Author(s):  
J. V. da Silva ◽  
G. C. Ricarte

In this paper, we establish global Sobolev a priori estimates for [Formula: see text]-viscosity solutions of fully nonlinear elliptic equations as follows: [Formula: see text] by considering minimal integrability condition on the data, i.e. [Formula: see text] for [Formula: see text] and a regular domain [Formula: see text], and relaxed structural assumptions (weaker than convexity) on the governing operator. Our approach makes use of techniques from geometric tangential analysis, which consists in transporting “fine” regularity estimates from a limiting operator, the Recession profile, associated to [Formula: see text] to the original operator via compactness methods. We devote special attention to the borderline case, i.e. when [Formula: see text]. In such a scenery, we show that solutions admit [Formula: see text] type estimates for their second derivatives.


2021 ◽  
Vol 10 (1) ◽  
pp. 39-45
Author(s):  
S. Kumbinarasaiah ◽  
K.R. Raghunatha

Abstract In this article, we present the Laguerre wavelet exact Parseval frame method (LWPM) for the two-dimensional flow of a rotating micropolar fluid in a porous channel with huge mass transfer. This flow is governed by highly nonlinear coupled partial differential equations (PDEs) are reduced to the nonlinear coupled ordinary differential equations (ODEs) using Berman's similarity transformation before being solved numerically by a Laguerre wavelet exact Parseval frame method. We also compared this work with the other methods in the literature available. Moreover, in the graphs of the velocity distribution and microrotation, we shown that the proposed scheme's solutions are more accurate and applicable than other existing methods in the literature. Numerical results explaining the effects of various physical parameters connected with the flow are discussed.


2014 ◽  
Vol 57 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Ole Christensen ◽  
Hong Oh Kim ◽  
Rae Young Kim

AbstractThe unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible.


Sign in / Sign up

Export Citation Format

Share Document