scholarly journals Rice bran lipase catalyzed esterification of palm oil fatty acid distillate and glycerol in organic solvent

2007 ◽  
Vol 12 (4) ◽  
pp. 462-462
Author(s):  
Fui Chin Chong ◽  
Being Ti Tey ◽  
Zanariah Mohd Dom ◽  
Kok Hing Cheong ◽  
Budiatman Satiawihardja ◽  
...  
2007 ◽  
Vol 12 (3) ◽  
pp. 250-256 ◽  
Author(s):  
Fui Chin Chong ◽  
Beng Ti Tey ◽  
Zanariah Mohd Dom ◽  
Kok Hing Cheong ◽  
Budiatman Satiawihardja ◽  
...  

2006 ◽  
Vol 6 ◽  
pp. 1124-1131 ◽  
Author(s):  
Fui Chin Chong ◽  
Beng Ti Tey ◽  
Zanariah Mohd. Dom ◽  
Nordin Ibrahim ◽  
Russly Abd. Rahman ◽  
...  

An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65°C, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.


2020 ◽  
Vol 71 (1) ◽  
pp. 336
Author(s):  
S. Sahu ◽  
M. Ghosh ◽  
D. K. Bhattacharyya

Rice bran oil fatty acid distillate (RBOFAD) is an important by-product obtained from the physical refining process. This fatty acid distillate contains high a amount of Unsaponifiable Matter (γ-oryzanol 3.27 gm/100gm UM; total tocopherol 10.93 mg/100 g UM; total phytosterol 21.81 g/100g UM; squalene 1.15 g/100 g UM and total fatty alcohol 73.34 g/100 g UM) and free fatty acids. Antioxidant-rich Oleogels were obtained from rice bran wax (RBW), rice bran oil fatty acid distillate (RBOFAD) and refined rice bran oil. The main objective of this study was to utilize the antioxidant-rich unsaponifiable matter of RBOFAD (UMRBOFAD) as an organogelator along with rice bran wax, which also acts as a good organogelator. Antioxidant-rich oleogel was prepared using UMRBFAD, ethylcellulose (EC) and RBW at 2%, 2%, 3% on weight basis, respectively, in refined rice bran oil and this antioxidant-rich oleogel was compared with rice bran oil oleogel using RBW at 7% on weight basis of rice bran oil. These oleogels were evaluated using a combination of techniques such as differential scanning calorimetry (DSC), polarized light microscopy (PLM), Viscosity, synchrotron radiation X-ray diffraction (SR-XRD) and FTIR Spectroscopy. The differential scanning calorimetry (DSC) measured the thermal properties of rice bran oil oleogel and high antioxidant-rich oleogel. Polarized light microscopy images revealed needle-like crystals for RBW. SR-XRD measurements were used for clarification of the crystal structures of the building blocks of these oleogels. The antioxidant activities of oleogels were evaluated involving DPPH and ABTS assays.


2020 ◽  
Vol 17 (2) ◽  
pp. 1079-1084
Author(s):  
Zarkoni Azis ◽  
Bambang Heru Susanto ◽  
Mohammad Nasikin

Gasoline is liquid hydrocarbon fuel used for spark-ignition engine. Most of gasoline production is carried out in the petroleum oil refinery through several stages of process and fluid catalytic cracking (FCC) is an important process that can convert some of heavy oil fractions like vacuum gasoil (VGO) and residue to be cracked into gasoline and lighter products. Consumption of gasoline for transportation fuel in Indonesia is higher than its production capability, so this gap has compelled to search the alternative process route using renewable feedstock. Coprocessing of petroleum gasoil with crude palm oil in fluid catalytic cracking had been investigated previously resulting in lower value of conversion as well as gasoline yield when applying co-feeds at higher level of vegetable oils. Cracking feedstock containing triglyceride and fatty acid from vegetable oil is supposed to be the other possibility as a reason of conversion and yield changes. The research work is aimed to find out another way for gasoline yield upgrading in fluid catalytic cracking process using available catalyst by coprocessing of VGO with refined bleached deodorized palm oil (RBDPO) and small amount of palm fatty acid distillate (PFAD). The experimental work of cracking reaction was performed on fluid-bed reactor of ACE unit at temperature of 530 °C, nearly atmospheric pressure and catalyst-oil ratio of 5.5 g/g. Three kind of oil feeds were tested namely VGO, VGO mixed with 5% RBDPO and VGO added with 5% RBDPO-PFAD of mixing ratio 9:1. The cracking reaction results in gaseous and liquid products. The gaseous phase product was analyzed using online gas chromatography to detect light hydrocarbon components of C1, C2 and H2 as dry gas and hydrocarbon components of C3 and C4 as LPG. The liquid item was investigated through gas chromatography of simulated distillation to separate fluid components including gasoline, light cycle oil (LCO) and slurry oil. Carbon material placed on catalyst through cracking reaction was analyzed at regeneration step of spent catalyst passed through catalytic converter by online Infrared method. Coprocessing of VGO with 5% RBDPO and VGO with 5% RBDPO-PFAD can alter conversion and product yields. The presence of triglyceride and fatty acid in oil feeds during cracking reaction influence signifi- cantly to gasoline enhancement. Although this coprocessing work has shown initial phenomenon in accordance with hypothesis, further investigation is necessary to explore deeper in order to obtain an optimized process condition by various levels of coprocessing feed.


2020 ◽  
Vol 1655 ◽  
pp. 012030
Author(s):  
Sri Rezeki Muria ◽  
Yelmida Azis ◽  
Khairat ◽  
Desy Erika Putri ◽  
Zultiniar ◽  
...  

2021 ◽  
pp. 100096
Author(s):  
Nattee Akkarawatkhoosith ◽  
Tiprawee Tongtummachat ◽  
Amaraporn Kaewchada ◽  
Attasak Jaree

2021 ◽  
Vol 882 (1) ◽  
pp. 012038
Author(s):  
Sihyun Lee ◽  
Jiho Yoo ◽  
Datin Fatia Umar

Abstract The utilization of low-rank coal is restricted by such factors as high moisture content, low heating value, high propensity to low-temperature oxidation, spontaneous combustion, etc. Some coal upgrading technologies to reduce the moisture content have been developed, one of them is coal upgrading palm oil technology using palm fatty acid distillate as an additive to keep the stability of moisture content in the coal after the process. To study the possibility of the upgrading technology application in Indonesia, some studies have been conducted. The study covered coal characterization such as proximate, ultimate and calorific value, palm fatty acid distillate for stabilization of upgraded low-rank coal and coal upgrading by coal upgrading palm oil technology in laboratory scale. By using 7 Indonesian low-rank coals and 4 palm fatty acid distillates, it is confirmed that the coal upgrading palm oil technology is effective to reduce the moisture content and increase the calorific value of low rank coal.


Sign in / Sign up

Export Citation Format

Share Document