Kinetics of kojic acid fermentation byAspergillus flavus link S44-1 using sucrose as a carbon source under different pH conditions

2006 ◽  
Vol 11 (1) ◽  
pp. 72-79 ◽  
Author(s):  
M. Rosfarizan ◽  
A. B. Ariff
Author(s):  
Gianluca Viscusi ◽  
Giuliana Gorrasi

AbstractIn this paper gelatin beads reinforced with natural hemp hurd have been produced as pH sensitive devices for the release of eugenol, as green pesticide. The composites beads, with a mean diameter of about 1 mm, were obtained by polymer droplet gelation in sunflower oil. Thermal properties were evaluated showing no noticeable difference after the introduction of hemp hurd. Barrier properties demonstrated an improvement of hydrophobization. The introduction of 5% w/w of hemp hurd led to a reduction of sorption coefficient of about 85% compared to unloaded gelatin beads. Besides, the diffusion coefficient decreased, introducing 5% w/w of hemp hurd, from 8.91 × 10−7 to 0.77 × 10−7 cm2/s. Swelling and dissolution phenomena of gelatin beads were studied as function of pH. The swelling of gelatin beads raised as pH increased up to 2.3 g/g, 9.1 g/g and 27.33 g/g at pH 3, 7 and 12, respectively. The dissolution rate changed from 0.034 at pH 3 to 0.077 h−1 at pH 12. Release kinetics of eugenol at different pH conditions were studied. The released eugenol after 24 h is 98%, 91%, 81 and 63% w/w (pH 3), 87%, 62%, 37 and 32 wt% (pH 7) and 81%, 68%, 60 and 52 wt% (pH 12) for unloaded gelatin beads and gelatin beads with 1%, 3 and 5% of hemp hurd, respectively. The eugenol release behavior was demonstrated to be highly sensitive to the pH release medium, which allows to tune such devices as green pesticide release systems in soils with different level of acidity/basicity.


2013 ◽  
Vol 726-731 ◽  
pp. 2506-2509
Author(s):  
Xiao Xiao Wang ◽  
Xiao Qin Yu ◽  
Jun Ya Pan ◽  
Ji Wu Li

The effects of Pb2+concentration, pH and additional carbon source on biodegradation of 4-chlorophenol (4-CP) byFusariumsp. were investigated, and the characteristic and kinetic of 4-CP biodegradation were analyzed. It was concluded that 4-CP biodegradation rate byFusariumsp. decreased a little at concentration of Pb2+0.20 mg/L and 4-CP 50 mg/L. The suitable biodegradation pH was range from 6 to 7. Additional carbon source (phenol) might increase the rate of 4-CP biodegradation. The kinetic equations of 4-CP biodegradation were well accord with the zero order reaction equation at different concentration of Pb2+.


2000 ◽  
Vol 3 (6) ◽  
pp. 977-982 ◽  
Author(s):  
M. Rosfarizan ◽  
A.B. Ariff . ◽  
M. A. Hassan . ◽  
M.I.A. Karim .

2012 ◽  
Vol 554-556 ◽  
pp. 1925-1928 ◽  
Author(s):  
Ji Wu Li ◽  
Xiao Hong Zhu ◽  
Jun Ya Pan

The stain of Fusarium sp. HJ01 used in 4-chlorophenol (4-CP) degradation was isolated in our laboratory. The effects of pH, temperature, 4-CP concentration, carbon source on 4-CP degradation rate were studied. It was concluded that Fusarium sp. HJ01 could grow with 4-CP as the sole carbon and energy source. 4-CP concentration of 100mg/L in the pH range of 4~10 and temperature range of 25°C~35°C could be degraded completely. The capacity of 4-CP degradation was effectively enhanced by the addiction of sucrose. The kinetics of 4-CP degradation could well accord with the Haldane model for 4-CP as the sole carbon source and with first order equation for added other sucrose.


2018 ◽  
Vol 116 ◽  
pp. 112-118 ◽  
Author(s):  
Dorota Kulikowska ◽  
Katarzyna Bernat ◽  
Kamila Konopka

2018 ◽  
Vol 101 ◽  
pp. 143-150 ◽  
Author(s):  
Ewa Liwarska-Bizukojć ◽  
Jacek Chojnacki ◽  
Małgorzata Klink ◽  
Dorota Olejnik

2017 ◽  
Vol 19 (7) ◽  
pp. 964-974 ◽  
Author(s):  
Swatantra Pratap Singh ◽  
Saumyen Guha ◽  
Purnendu Bose

Abiotic and bacterial degradation is presented for the two isomers α- and β- of the organochlorine pesticide endosulfan, denoted as ES-1 and ES-2, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ching-Yi Lien ◽  
Ching-Yu Chen ◽  
Shih-Ting Lai ◽  
Chin-Feng Chan

We investigated the kinetics of 4N-acetyl-pentapeptides, Ac-P1, Ac-P2, Ac-P3, and Ac-P4, regarding inhibition of mushroom tyrosinase activity. The peptides sequences of Ac-P1, Ac-P2, Ac-P3, and Ac-P4 were Ac-RSRFK, Ac-KSRFR, Ac-KSSFR, and Ac-RSRFS, respectively. The 4N-acetyl-pentapeptides were able to reduce the oxidation ofL-DOPA by tyrosinase in a dose-dependent manner. Of the 4N-acetyl-pentapeptides, only Ac-P4 exhibited lag time (80 s) at a concentration of 0.5 mg/mL. The tyrosinase inhibitory effects of Ac-P4 (IC500.29 mg/mL) were more effective than those of Ac-P1, Ac-P2, and Ac-P3, in which IC50s were 0.75 mg/mL, 0.78 mg/mL, and 0.81 mg/mL, respectively. Kinetic analysis demonstrated that all 4N-acetyl-pentapeptides were mixed-type tyrosinase inhibitors. Furthermore, 0.1 mg/mL of Ac-P4 exhibited significant melanogenesis inhibition on B16F10 melanoma cells and was more effective than kojic acid. The melanogenesis inhibition of Ac-P4 was dose-dependent and did not induce any cytotoxicity on B16F10 melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document