The Characteristics and Kinetic Equation of 4-CP Biodegradation by Fusarium sp. HJ01

2012 ◽  
Vol 554-556 ◽  
pp. 1925-1928 ◽  
Author(s):  
Ji Wu Li ◽  
Xiao Hong Zhu ◽  
Jun Ya Pan

The stain of Fusarium sp. HJ01 used in 4-chlorophenol (4-CP) degradation was isolated in our laboratory. The effects of pH, temperature, 4-CP concentration, carbon source on 4-CP degradation rate were studied. It was concluded that Fusarium sp. HJ01 could grow with 4-CP as the sole carbon and energy source. 4-CP concentration of 100mg/L in the pH range of 4~10 and temperature range of 25°C~35°C could be degraded completely. The capacity of 4-CP degradation was effectively enhanced by the addiction of sucrose. The kinetics of 4-CP degradation could well accord with the Haldane model for 4-CP as the sole carbon source and with first order equation for added other sucrose.

2013 ◽  
Vol 781-784 ◽  
pp. 127-130
Author(s):  
Xiao Xiao Wang ◽  
Shi Bo Wang ◽  
Jun Ya Pan ◽  
Xiao Ping Shi ◽  
Ji Wu Li

The stain ofFusariumsp. used in 4-chlorophenol (4-CP) degradation was isolated in our laboratory. The effects of pH, Cu2+concentration, carbon source on 4-CP degradation rate byFusariumsp. were investigated. The kinetic equation of 4-CP biodegradation was discussed. It was concluded thatFusariumsp. could grow with 4-CP as the sole carbon and energy source. 4-CP concentration of 50mg/L in the Cu2+concentration of 3mg/L could be degraded completely. The capacity of 4-CP degradation was effectively enhanced by the addiction of phenol. Phenol concentration of 200 mg/L in the pH 7 and the Cu2+concentration of 3 mg/L could be degraded completely. Cu2+at high concentration might reduce the biodegradation rate of 4-CP. The kinetic equation of 4-CP biodegradation could well accord with the zero order equation for 4-CP as the sole carbon source with Cu2+coexistence byFusariumsp..


2013 ◽  
Vol 63 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Iqbal Ahmad ◽  
Raheela Bano ◽  
Muhammad Ali Sheraz ◽  
Sofia Ahmed ◽  
Tania Mirza ◽  
...  

The kinetics of photodegradation of levofloxacin in solution on UV irradiation in the pH range 2.0-12.0 has been studied using a HPLC method. Levofloxacin undergoes first-order kinetics in the initial stages of the reaction and the apparent first-order rate constants are of the order of 0.167 to 1.807×10-3 min-1. The rate-pH profile is represented by a curve indicating the presence of cationic, dipolar and anionic species during the reaction. The singly ionized form of the molecule is non-fluorescent and is less susceptible to photodegradation. The increase in the degradation rate in the pH range 5.0-9.0 may be due to greater reactivity of the ionized species existing in that range. The rate appears to vary with a change in the degree of ionization of the species present in a particular pH range and their susceptibility to photodegradation. Above pH 9, the decrease in the rate of photodegradation may be a result of deprotonation of the piperazinyl group. The levofloxacin molecule is more stable in the pH range around 7, which is then suitable for formulation purposes. The photodegradation of levofloxacin was found to be affected by the dielectric constant and viscosity of the medium


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


2013 ◽  
Vol 803 ◽  
pp. 157-160
Author(s):  
Zhen Zhen Kong ◽  
Dong Mei Jia ◽  
Su Wen Cui

The composite weakly basic resin (D301Fe) was prepared and examined using scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption kinetics of glyphosate from aqueous solution onto composite weakly basic resin (D301Fe) were investigated under different conditions. The experimental data was analyzed using various adsorption kinetic models like pseudo-first order, the pseudo-second order, the Elovich and the parabolic diffusion models to determine the best-fit equation for the adsorption of glyphosate onto D301Fe. The results show that the pseudo-second order equation fitted the experimental data well and its adsorption was chemisorption-controlled.


1930 ◽  
Vol 3 (4) ◽  
pp. 650-659
Author(s):  
John T. Blake

Abstract A procedure for the determination of combined selenium in rubber has been evolved. The rate of combination of selenium and rubber has been ascertained under certain conditions and shown to follow a first-order equation. A minimum value for the molecular weight of rubber has been estimated. The formation of hard rubber under chosen experimental conditions has been put on a mathematical basis and has been shown to follow a second-order reaction. The soft- and hard-rubber reactions have been shown qualitatively to be successive reactions and the function of accelerators has been discussed. The theory explains the anomalous results obtained by previous investigators.


1984 ◽  
Vol 62 (4) ◽  
pp. 729-735 ◽  
Author(s):  
John W. Bunting ◽  
Glenn M. Kauffman

The kinetics of disproportionation and ferricyanide ion oxidation of the 10-methylacridinium cation have been measured spectrophotometrically over the pH range 9–14 in.20% CH3CN – 80% H2O (v/v) and ionic strength 1.0 at 25 °C. Disproportionation is kinetically second-order in total acridine species. The pH–rate profile is consistent with the rate-determining reaction of one acridinium cation with the pseudobase alkoxide anion derived from a second acridinium cation. Ferricyanide ion oxidation is kinetically first-order in each of ferricyanide ion and total acridine species. The pH–rate profile requires three distinct pathways for the ferricyanide ion oxidation of the 10-methylacridinium cation. For pH < 9.7, rate-determining attack of ferricyanide ion on the neutral pseudobase predominates, while for pH > 12.8 the predominant oxidation pathway involves reaction of ferricyanide ion with the pseudobase alkoxide ion. Between pH 9.7 and 12.8, the major oxidation pathway involves initial disproportionation of the acridinium cation followed by ferricyanide ion oxidation of the 9,10-dihydro-10-methylacridine product. This latter route accounts for a maximum of 69% of the total ferricyanide ion oxidation at pH 11.1.


1969 ◽  
Vol 114 (4) ◽  
pp. 719-724 ◽  
Author(s):  
Charles Phelps ◽  
Eraldo Antonini

1. Static titrations reveal an exact stoicheiometry between various haem derivatives and apoperoxidase prepared from one isoenzyme of the horseradish enzyme. 2. Carbon monoxide–protohaem reacts rapidly with apoperoxidase and the kinetics can be accounted for by a mechanism already applied to the reaction of carbon monoxide–haem derivatives with apomyoglobin and apohaemoglobin. 3. According to this mechanism a complex is formed first whose combination and dissociation velocity constants are 5×108m−1sec.−1 and 103sec.−1 at pH9·1 and 20°. The complex is converted into carbon monoxide–haemoprotein in a first-order process with a rate constant of 235sec.−1 for peroxidase and 364sec.−1 for myoglobin at pH9·1 and 20°. 4. The effects of pH and temperature were examined. The activation energy for the process of complex-isomerization is about 13kcal./mole. 5. The similarity in the kinetics of the reactions of carbon monoxide–haem with apoperoxidase and with apomyoglobin suggests structural similarities at the haem-binding sites of the two proteins.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 730 ◽  
Author(s):  
Anna Lisik ◽  
Witold Musiał

The aim of this study was to verify the effect of the formulation on the release kinetics of active substances from preparations containing iron ions using in-line conductivity measurements. A simple, fast method was developed and may be applied for detailed evaluation of some kinetics factors obtained from the release data. Four different equations were used: zero-order equation, first-order equation, models: Korsmeyer–Peppas and Hixson–Crowell. Values of the determined half-time release for zero and first-order kinetic models ranged from 11.56 to 89.97 min. In the case of analysis according to these typical models, the values of the square root of the correlation coefficients were included between 0.9916 and 0.9995. The results transformed for the Hixson–Crowell model as constant release Ks, ranged between 0.0160 and 0.0437. The values of the respective calculated squares of the correlation coefficient ranged from 0.9933 to 0.9959. The determined release rate constants according to the Korsmeyer–Peppas model were between 0.0023 and 0.1630. The coefficients ‘n’ of the Korsmeyer–Peppas equation did not exceed 1.2 with the corresponding r2 values 0.9408–0.9960. Obtained results confirmed that the method is applicable for evaluation of selected drug compositions containing iron ions.


1986 ◽  
Vol 32 (2) ◽  
pp. 314-319 ◽  
Author(s):  
J T Wu ◽  
L H Wu ◽  
J A Knight

Abstract Seeking to minimize degradation of NADPH during storage, reagent preparation, and assays, we investigated the effects of pH, temperature, and ionic strength as well as the effects of phosphate and acetate. NADH was also included for comparison. Our results indicate that the rate of degradation of NADPH is proportional most importantly to temperature and concentrations of hydronium ion, but also to concentrations of phosphate and acetate. The degradation rate decreased with increasing ionic strength at neutral pH, but increased slightly at lower pH. NADPH generally is less stable than NADH under the same conditions. The reaction orders with respect to hydronium ion and anions were near 1 for NADH degradation reactions, about 0.5 for NADPH. Rate constants for NADH and NADPH differed more at higher pH and lower phosphate and acetate concentrations.


Sign in / Sign up

Export Citation Format

Share Document