A geometrical formulation of the renormalization group method for global analysis II: Partial differential equations

1997 ◽  
Vol 14 (1) ◽  
pp. 51-69 ◽  
Author(s):  
Teiji Kunihiro

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.



2013 ◽  
Vol 30 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Reda G. Abdel-Rahman ◽  
Ahmed M. Megahed

ABSTRACTThe Lie group transformation method is applied for solving the problem of mixed convection flow with mass transfer over a permeable stretching surface with Soret and Dufour effects. The application of Lie group method reduces the number of independent variables by one and consequently the system of governing partial differential equations reduces to a system of ordinary differential equations with appropriate boundary conditions. Further, the reduced non-linear ordinary differential equations are solved numerically by using the shooting method. The effects of various parameters governing the flow and heat transfer are shown through graphs and discussed. Our aim is to detect new similarity variables which transform our system of partial differential equations to a system of ordinary differential equations. In this work a special attention is given to investigate the effect of the Soret and Dufour numbers on the velocity, temperature and concentration fields above the sheet.







2008 ◽  
Vol 237 (8) ◽  
pp. 1029-1052 ◽  
Author(s):  
R.E. Lee DeVille ◽  
Anthony Harkin ◽  
Matt Holzer ◽  
Krešimir Josić ◽  
Tasso J. Kaper


Sign in / Sign up

Export Citation Format

Share Document