Comparison of two-equation model and reynolds stress models with experimental data for the three-dimensional turbulent boundary layer in a 30 degree bend

2000 ◽  
Vol 14 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Insub Lee ◽  
Hong Sun Ryou ◽  
Seong Hyuk Lee ◽  
Soo Chae
2000 ◽  
Vol 409 ◽  
pp. 121-147 ◽  
Author(s):  
D. KNIGHT ◽  
M. GNEDIN ◽  
R. BECHT ◽  
A. ZHELTOVODOV

A crossing-shock-wave/turbulent-boundary-layer interaction is investigated using the k–ε turbulence model with a new low-Reynolds-number model based on the approach of Saffman (1970) and Speziale et al. (1990). The crossing shocks are generated by two wedge-shaped fins with wedge angles α1 and α2 attached normal to a flat plate on which an equilibrium supersonic turbulent boundary layer has developed. Two configurations, corresponding to the experiments of Zheltovodov et al. (1994, 1998a, b), are considered. The free-stream Mach number is 3.9, and the fin angles are (α1, α2) = (7°, 7°) and (7°, 11°). The computed surface pressure displays very good agreement with experiment. The computed surface skin friction lines are in close agreement with experiment for the initial separation, and are in qualitative agreement within the crossing shock interaction region. The computed heat transfer is in good agreement with experiment for the (α1, α2) = (7°, 7°) configuration. For the (α1, α2) = (7°, 11°) configuration, the heat transfer is significantly overpredicted within the three-dimensional interaction. The adiabatic wall temperature is accurately predicted for both configurations.


1986 ◽  
Vol 163 ◽  
pp. 459-478 ◽  
Author(s):  
A. M. Talmon ◽  
J. M. G. Kunen ◽  
G. Ooms

Flow visualization and Reynolds-stress measurement were combined in an investigation of a turbulent boundary layer in a water channel. Hydrogen bubbles were used to visualize the flow; a laser-Doppler anemometer capable of measuring two velocity components was applied to measure the instantaneous value of the Reynolds stress. Owing to the three-dimensional, time-dependent character of the flow it was rather difficult to identify flow structures from measured velocity signals, especially at larger distances from the wall. Despite this difficulty a method based on the instantaneous value of the Reynolds stress could be developed for detecting bursts in the wall region of the boundary layer. By this method the three-dimensional, time-dependent character of the flow is taken into account by attributing to the same burst ejections occurring successively with very short time intervals. This identification procedure is based on a comparison on a one-to-one basis between visualized flow structures and measured values of the Reynolds stress. The detected bursts were found to make a considerable contribution to the momentum transport in the boundary layer.


AIAA Journal ◽  
1978 ◽  
Vol 16 (7) ◽  
pp. 645-646 ◽  
Author(s):  
C. I. Ezekwe ◽  
F. J. Pierce ◽  
J. E. McAllister

1999 ◽  
Vol 393 ◽  
pp. 175-213 ◽  
Author(s):  
J. M. BRUNS ◽  
H. H. FERNHOLZ ◽  
P. A. MONKEWITZ

This paper describes the evolution of an incompressible turbulent boundary layer on the flat wall of an ‘S’-shaped wind tunnel test section under the influence of changing streamwise and spanwise pressure gradients. The unit Reynolds number based on the mean velocity at the entrance of the test section was fixed to 106 m−1, resulting in Reynolds numbers Reδ2, based on the streamwise momentum thickness and the local freestream velocity, between 3.9 and 11 × 103. The particular feature of the experiment is the succession of two opposite changes of core flow direction which causes a sign change of the spanwise pressure gradient accompanied by a reversal of the spanwise velocity component near the wall, i.e. by the formation of so-called cross-over velocity profiles. The aim of the study is to provide new insight into the development of the mean and fluctuating flow field in three-dimensional pressure-driven boundary layers, in particular of the turbulence structure of the near-wall and the cross-over region.Mean velocities, Reynolds stresses and all triple correlations were measured with a newly developed miniature triple-hot-wire probe and a near-wall hot-wire probe which could be rotated and traversed through the test plate. Skin friction measurements were mostly performed with a wall hot-wire probe. The data from single normal wires extend over wall distances of y+ [gsim ] 3 (in wall units), while the triple-wire probe covers the range y+ [gsim ] 30. The data show the behaviour of the mean flow angle near the wall to vary all the way to the wall. Then, to interpret the response of the turbulence to the pressure field, the relevant terms in the Reynolds stress transport equations are evaluated. Finally, an attempt is made to assess the departure of the Reynolds stress profiles from local equilibrium near the wall.


2001 ◽  
Vol 123 (3) ◽  
pp. 551-558 ◽  
Author(s):  
InSub Lee ◽  
Hong Sun Ryou ◽  
Seong Hyuk Lee ◽  
Ki Bae Hong ◽  
Soo Chae

It is the aim of this article to investigate numerically the effects of spanwise pressure gradient on an embedded streamwise vortex in a turbulent boundary layer. The governing equations were discretized by the finite volume method and SIMPLE algorithm was used to couple between pressure and velocity. The LRR model for Reynolds stresses was utilized to predict the anisotropy of turbulence effectively. The validation was done for two cases: one is the development of a streamwise vortex embedded in a pressure-driven, three-dimensional turbulent boundary layer. The other involves streamwise vortex pairs embedded in a turbulent boundary layer without the spanwise pressure gradient. In the case of the former, the predicted results were compared with Shizawa and Eaton’s experimental data. In the latter case, the calculated results were compared against the experimental data of Pauley and Eaton. We performed numerical simulations for three cases with different values of spanwise pressure gradient. As a result, the primary streamwise vortex with spanwise pressure gradients decays more rapidly than the case with no pressure gradients, as the spanwise pressure gradient increases. This indicates that the spanwise pressure gradient may play an important role on mean and turbulent structures. In particular, it can be seen that the increase of pressure gradient enhances a level of turbulent normal stresses.


Sign in / Sign up

Export Citation Format

Share Document