A new mass and temperature control valve for exhaust gas recirculation in car diesel engines

MTZ worldwide ◽  
2007 ◽  
Vol 68 (12) ◽  
pp. 21-23
Author(s):  
Thomas Holzbaur ◽  
Eike Willers ◽  
Achim Hess ◽  
Hans-Peter Klein ◽  
Markus Schuessler ◽  
...  
Author(s):  
Stefano d'Ambrosio ◽  
Alessandro Ferrari ◽  
Ezio Spessa

Exhaust gas recirculation (EGR) is extensively employed in diesel combustion engines to achieve nitrogen oxides emission targets. The EGR is often cooled in order to increase the effectiveness of the strategy, even though this leads to a further undesired impact on particulate matter and hydrocarbons. Experimental tests were carried out on a diesel engine at a dynamometer rig under steady-state speed and load working conditions that were considered relevant for the New European Driving Cycle. Two different shell and tube-type EGR coolers were compared, in terms of the pressure and temperature of the exhaust and intake lines, to evaluate thermal effectiveness and induced pumping losses. All the relevant engine parameters were acquired along EGR trade-off curves, in order to perform a detailed comparison of the two coolers. The effect of intake throttling operation on increasing the EGR ratio was also investigated. A purposely designed aging procedure was run in order to characterize the deterioration of the thermal effectiveness and verify whether clogging of the EGR cooler occurred. The EGR mass flow-rate dependence on the pressure and temperature upstream of the turbine as well as the pressure downstream of the EGR control valve was modeled by means of the expression for convergent nozzles. The restricted flow-area at the valve-seat passage and the discharge coefficient were accurately determined as functions of the valve lift.


Author(s):  
Fengjun Yan ◽  
Junmin Wang

Fueling control in Diesel engines is not only of significance to the combustion process in one particular cycle, but also influences the subsequent dynamics of air-path loop and combustion events, particularly when exhaust gas recirculation (EGR) is employed. To better reveal such inherently interactive relations, this paper presents a physics-based, control-oriented model describing the dynamics of the intake conditions with fuel injection profile being its input for Diesel engines equipped with EGR and turbocharging systems. The effectiveness of this model is validated by comparing the predictive results with those produced by a high-fidelity 1-D computational GT-Power engine model.


MTZ worldwide ◽  
2008 ◽  
Vol 69 (2) ◽  
pp. 20-26 ◽  
Author(s):  
Stefan Münz ◽  
Christiane Römuss ◽  
Peter Schmidt ◽  
Kai-Henning Brune ◽  
Heinz-Peter Schiffer

MTZ worldwide ◽  
2006 ◽  
Vol 67 (1) ◽  
pp. 6-9
Author(s):  
Dirk Bergmann ◽  
Christian Philipp ◽  
Helmut Rall ◽  
Rolf Traub

2012 ◽  
Vol 25 ◽  
pp. 01019
Author(s):  
Cécile Gaborieau ◽  
Alain Sommier ◽  
Jean Toutain ◽  
Yannick Anguy ◽  
Gérald Crepeau ◽  
...  

1999 ◽  
Author(s):  
I. Kolmanovsky ◽  
M. van Nieuwstadt ◽  
P. Moraal

Abstract This paper presents results on the optimal transient control of diesel engines with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). The implications of these results for feedback controller design axe discussed.


Sign in / Sign up

Export Citation Format

Share Document