Chloridizing Roasting Process for a Complex Sulfide Concentrate

JOM ◽  
1985 ◽  
Vol 37 (6) ◽  
pp. 29-33 ◽  
Author(s):  
T. K. Mukherjee ◽  
P. R. Menon ◽  
P. P. Shukla ◽  
C. K. Gupta
2020 ◽  
Vol 10 (1) ◽  
pp. 1825-1832

Bioleaching kinetics of copper and zinc from a complex sulfide concentrate sample was evaluated in this manuscript. An acidophilic microorganism was used for the metal dissolution. The metal dissolution was evaluated based on the variation of leaching parameters like initial pH, pulp density, and initial ferrous concentration. The leaching rate of metals increased with the increase of initial ferrous concentration up to 20g/L, and it decreased on a further increase of the initial ferrous concentration. It decreased at the initial ferrous concentration above 20g/L due to the formation of an iron precipitate, which did not allow the contact of lixiviant with the metal sulfide matrix. The leaching rate increased with the increase of initial pH up to 2.0, and thereafter it decreased. Similarly, the leaching rate remained unchanged up to pulp density of 15%(w/v), and it decreased upon further increase of the pulp density due to the mutual completion of the complex sulfide particles towards the lixiviants.


2011 ◽  
Vol 21 (12) ◽  
pp. 2744-2751 ◽  
Author(s):  
Mohsen HASHEMZADEHFINI ◽  
Jana FICERIOVÁ ◽  
Emad ABKHOSHK ◽  
Behrouz Karimi SHAHRAKI

2003 ◽  
Vol 70 (1-3) ◽  
pp. 113-119 ◽  
Author(s):  
Peter Baláž ◽  
Jana Ficeriová ◽  
Carlos Villachica Leon

2008 ◽  
Vol 73 (3) ◽  
pp. S165-S171 ◽  
Author(s):  
I. López-Galilea ◽  
I. Andriot ◽  
M. P. de Peña ◽  
C. Cid ◽  
E. Guichard

Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 730
Author(s):  
Wen Yu ◽  
Xiaojin Wen ◽  
Wei Liu ◽  
Jiangan Chen

In this study, the carbothermic reduction and nitridation mechanism of vanadium-bearing titanomagnetite concentrate are investigated in terms of phase transformation, microstructure transformation, and thermodynamic analyses. The differences in the reaction behavior of titanomagnetite and ilmenite in vanadium-bearing titanomagnetite concentrate, as well as the distribution characteristic of V in the roasted products, are emphatically studied. It is observed that the reaction sequences of titanomagnetite and ilmenite transformations into nitride are as follows: Fe3−xTixO4→Fe2TiO4→FeTiO3→M3O5→(Ti, V)(N, C); FeTiO3→M3O5→Ti(N, C). The reduction of M3O5 to TiN is the rate-limiting step of the entire reaction, and metal iron is an important medium for transferring C for the reduction of M3O5. Titanomagnetite is faster to convert into nitride than ilmenite is, and the reasons for this are discussed in detail. During the entire roasting process, V mainly coexists with Ti and seems to facilitate the conversion of titanium oxides into (Ti, V)(N, C).


Author(s):  
Hailin Long ◽  
Kaihua Chen ◽  
Caixia Xu ◽  
Haoyu Li ◽  
Huimin Xie ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 558
Author(s):  
Hui Li ◽  
Wei Xiao ◽  
Jianping Jin ◽  
Yuexin Han

The oxidation roasting of carbon-bearing micro-fine gold can eliminate or weaken the robbing effect of carbonaceous materials and clay, and destroy the encapsulation of micro-fine gold. The micropores produced by gas escaping during the roasting process are conducive to the diffusion of leaching agents, thus enhancing the cyanide leaching of gold. In this paper, the influence of the aeration rate during roasting on the leaching rate of fine-grained carbonaceous gold ore and its mechanism were studied using thermodynamic calculations, crystal structure analysis, surface chemical groups and bonds analysis, microporous structure analysis, and surface morphology detection. Under suitable roasting conditions, the carbonaceous and pyrite in the ore are oxidized, while carbonate minerals such as dolomite and calcite as well as clay minerals are decomposed, and the gold-robbing materials lose their activity. The experimental results have theoretical and practical significance for the popularization and application of oxidation roasting technology of fine carbon-bearing gold ore.


2020 ◽  
Vol 8 (3) ◽  
pp. 386 ◽  
Author(s):  
Maxim Muravyov ◽  
Anna Panyushkina

A two-step process, which involved ferric leaching with biologically generated solution and subsequent biooxidation with the microbial community, has been previously proposed for the processing of low-grade zinc sulfide concentrates. In this study, we carried out the process of complete biological oxidation of the product of ferric leaching of the zinc concentrate, which contained 9% of sphalerite, 5% of chalcopyrite, and 29.7% of elemental sulfur. After 21 days of biooxidation at 40 °C, sphalerite and chalcopyrite oxidation reached 99 and 69%, respectively, while the level of elemental sulfur oxidation was 97%. The biooxidation residue could be considered a waste product that is inert under aerobic conditions. The results of this study showed that zinc sulfide concentrate processing using a two-step treatment is efficient and promising. The microbial community, which developed during biooxidation, was dominated by Acidithiobacillus caldus, Leptospirillum ferriphilum, Ferroplasma acidiphilum, Sulfobacillus thermotolerans, S. thermosulfidooxidans, and Cuniculiplasma sp. At the same time, F. acidiphilum and A. caldus played crucial roles in the oxidation of sulfide minerals and elemental sulfur, respectively. The addition of L. ferriphilum to A. caldus during biooxidation of the ferric leach product proved to inhibit elemental sulfur oxidation.


Sign in / Sign up

Export Citation Format

Share Document