metal dissolution
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 57)

H-INDEX

28
(FIVE YEARS 6)

2022 ◽  
Vol 253 ◽  
pp. 115153
Author(s):  
Timon Novalin ◽  
Björn Eriksson ◽  
Sebastian Proch ◽  
Ulf Bexell ◽  
Claire Moffatt ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 108
Author(s):  
Kexin Xu ◽  
Xing Fu ◽  
Xinjie Wang ◽  
Zhiwei Fu ◽  
Xiaofeng Yang ◽  
...  

The grain orientation of Sn-based solder joints on copper pillars under the combined action of electron wind force and temperature gradient greatly affects their electromigration damage. The copper pillars with Sn-1.8Ag lead-free solder on the top was subjected to a current density of 1.5 × 104 A/cm2 at 125 °C to study the electromigration behaviors. The grain orientation was characterized by scanning electron microscopy (SEM) equipped with electron backscattered diffraction (EBSD) detector. Metal dissolution and voids formation in the cathode as well as massive intermetallic compounds(IMC) accumulation in the anode were observed after electromigration. Closer examination of solder joints revealed that the Sn grain whose c-axis perpendicular to electric current may have retarded Cu diffusion to anode and IMC accumulation. In addition, the newly formed Cu6Sn5 exhibited preferred orientation related to the electric current direction.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1255
Author(s):  
Srabani Mishra ◽  
Sandeep Panda ◽  
Ata Akcil ◽  
Seydou Dembele ◽  
Ismail Agcasulu

There is a growing interest in electronic wastes (e-wastes) recycling for metal recovery because the fast depletion of worldwide reserves for primary resources is gradually becoming a matter of concern. E-wastes contain metals with a concentration higher than that present in the primary ores, which renders them as an apt resource for metal recovery. Owing to such aspects, research is progressing well to address several issues related to e-waste recycling for metal recovery through both chemical and biological routes. Base metals, for example, Cu, Ni, Zn, Al, etc., can be easily leached out through the typical chemical (with higher kinetics) and microbial (with eco-friendly benefits) routes under ambient temperature conditions in contrast to other metals. This feature makes them the most suitable candidates to be targeted primarily for metal leaching from these waste streams. Hence, the current piece of review aims at providing updated information pertinent to e-waste recycling through chemical and microbial treatment methods. Individual process routes are compared and reviewed with focus on non-ferrous metal leaching (with particular emphasis on base metals dissolution) from some selected e-waste streams. Future outlooks are discussed on the suitability of these two important extractive metallurgical routes for e-waste recycling at a scale-up level along with concluding remarks.


2021 ◽  
pp. 109901
Author(s):  
Tianshu Li ◽  
Jun Wu ◽  
Xiaolei Guo ◽  
Anup M. Panindre ◽  
Gerald S. Frankel

2021 ◽  
Author(s):  
Tina Đukić ◽  
Leonard Jean Moriau ◽  
Luka Pavko ◽  
Mitja Kostelec ◽  
Martin Prokop ◽  
...  

The present research provides a comprehensive study of carbon-supported intermetallic Pt-alloy electrocatalysts and assesses their stability against metal dissolution in relation to the operating temperature and the potential window using two advanced electrochemical methodologies: (i) the in-house designed high-temperature disk electrode (HT-DE) methodology as well as (ii) a modification of the electrochemical flow cell coupled to an inductively coupled plasma mass spectrometer (EFC-ICP-MS), allowing for highly sensitive time- and potential-resolved measurements of metal dissolution. The findings contradict the generally accepted hypothesis that in contrast to the rate of carbon corrosion, which follows the Arrhenius law and increases exponentially with temperature, the kinetics of Pt and subsequently the less noble metal dissolution are supposed to be for the most part unaffected by temperature. On the contrary, clear evidence is presented that in addition to the importance of the voltage/potential window, the temperature is one of the most critical parameters governing the stability of Pt and thus, in the case of Pt-alloy electrocatalysts also the ability of the nanoparticles (NPs) to retain the less noble metal. Lastly, but also very importantly, results indicate that the rate of Pt redeposition significantly increases with temperature, which has been the main reason why mechanistic interpretation of the temperature-dependent kinetics related to the stability of Pt remained highly speculative until now.


Author(s):  
Susanne J. Wachs ◽  
Christopher Behling ◽  
Johanna Ranninger ◽  
Jonas Möller ◽  
Karl J. J. Mayrhofer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document