reaction behavior
Recently Published Documents


TOTAL DOCUMENTS

447
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7417
Author(s):  
Kaiyang Li ◽  
Tiance Zhang ◽  
Yuanzhi Zhu

Porous TiAl3 intermetallics were prepared by the thermal explosion (TE) and space holder method with different particle sizes of Ti and Al powders, and their reaction behaviors were investigated. The results showed that with the increase in the particle size of the Ti and Al powders, the interfacial contact between the particles decreased, resulting in low interfacial energy and reaction activity, making the process difficult to initiate. Meanwhile, the heat flow rose from 358.37 J/g to 730.17 J/g and 566.74 J/g due to the extension of the solid–liquid diffusion time. The TiAl3 structures obviously expanded, and the formation of connected pore channels promoted the porosity. Only when the Ti and Al particle sizes were both small did the solid–solid diffusion significantly appear. At the same time, the TE reaction weakened, so the product particles had no time to fully grow. This indicates that the particle size of the raw materials controlled the TE reaction process by changing the solid–liquid diffusion reaction time and the degree of solid-phase diffusion.



2021 ◽  
Vol 11 (23) ◽  
pp. 11424
Author(s):  
Atsumu Kubota ◽  
Mitsuhiko Kimoto ◽  
Takamasa Iio ◽  
Katsunori Shimohara ◽  
Masahiro Shiomi

This paper addresses the effects of visual reaction times of a turn around behavior toward touch stimulus in the context of perceived naturalness. People essentially prefer a quick and natural reaction time to interaction partners, but appropriate reaction times will change due to the kinds of partners, e.g., humans, computers, and robots. In this study, we investigate two visual reaction times in touch interaction: the time length from the touched timing to the start of a reaction behavior, and the time length of the reaction behavior. We also investigated appropriate reaction times for different beings: three robots (Sota, Nao and Pepper) and humans (male and female). We conducted a web-survey based experiment to investigate natural reaction times for robots and humans, and the results concluded that the best combinations of both reaction times are different between each robot (i.e., among Sota, Nao and Pepper) and the humans (i.e., between male and female). We also compared the effect of using the best combinations for each robot and human to prove the importance of using each appropriate reaction timing for each being. The results suggest that an appropriate reaction time combination investigated from the male model is not ideal for robots, and the combination investigated from the female model is a better choice for robots. Our study also suggests that calibrating parameters for individual robots’ behavior design would enable better performances than using parameters of robot behaviors based on observing human-human interaction, although such an approach is a typical method of robot behavior design.



Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3053
Author(s):  
Jong Hyuk Yun ◽  
San Moon ◽  
Do Kyung Kim ◽  
Joo-Hyung Kim

Due to the demand to upgrade from lithium-ion batteries (LIB), sodium-ion batteries (SIB) have been paid considerable attention for their high-energy, cost-effective, and sustainable battery system. Red phosphorus is one of the most promising anode candidates for SIBs, with a high theoretical specific capacity of 2596 mAh g−1 and in the discharge potential range of 0.01–0.8 V; however, it suffers from a low electrical conductivity, a substantial expansion of volume (~300%), and sluggish electron/ion kinetics. Herein, we have designed a well-defined electrode, which consists of red phosphorus, nanowire arrays encapsulated in the vertically aligned carbon nanotubes (P@C NWs), which were fabricated via a two-step, anodized-aluminum oxide template. The designed anode achieved a high specific capacity of 2250 mAh g−1 (87% of the theoretical capacity), and a stepwise analysis of the reaction behavior between sodium and red phosphorus was demonstrated, both of which have not been navigated in previous studies. We believe that our rational design of the red phosphorus electrode elicited the specific reaction mechanism revealed by the charge–discharge profiles, rendered excellent electrical conductivity, and accommodated volume expansion through the effective nano-architecture, thereby suggesting an efficient structure for the phosphorus anode to advance in the future.



Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Ronaldo Rodrigues de Sousa ◽  
Ayla Sant’Ana da Silva ◽  
Roberto Fernandez-Lafuente ◽  
Viridiana Santana Ferreira-Leitão

The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.



Author(s):  
Bruna Ricetti Margarida ◽  
Luana I. Flores ◽  
Luiz Fernando De Lima Luz Jr. ◽  
Marcelo Kaminski Lenzi

Biodiesel production from residual sources is gaining considerable attention nowadays. Consequently, many different studies with in-depth analysis concerning the influence of the transesterification reaction conditions are available in the literature. However, further evaluation of the esterification of fatty acids in the biodiesel industry is still needed. In this study, different parameters influencing the esterification reaction behavior using ethanol as the alcohol and lauric acid as the FFA are analyzed through factorial design and ANOVA methodologies to verify which ones are significant in the reaction. In total, four parameters were evaluated: temperature, catalyst concentration, ethanol/FFA ratio, and ethanol/water ratio. The temperature and ethanol/water ratio had a major influence on the reaction, as increasing these parameters greatly improved reaction conversion. It was also verified that using hydrous ethanol in the esterification reaction is possible in some conditions.



2021 ◽  
Author(s):  
Igor Ivanishin ◽  
Hamidreza Samouei

Abstract Chelating agents are used to stimulate high-temperature carbonate reservoirs and remove mineral scales. For field applications, commercial chelates—EDTA, DTPA, GLDA, etc.—are commonly supplied as 3550 wt% (1.2-1.7 M) solutions and diluted two times in water. However, the dependence of the reaction rate on the concentration of chelate in solution has never been quantified. This paper focuses on determining the kinetics of calcite dissolution as a function of the dilution factor of commonly used chelates at acidic pH. Using a rotating disk apparatus, the kinetics of calcite marble dissolution in 0.10.25 M EDTA (pH=4.9-5.0), 0.1-0.25 M DTPA (pH=3.5-5.0), and 0.28-0.85 M GLDA (pH=3.7-5.0) solutions has been investigated. The dissolution of calcite in all chelates has a negative fractional-order that increases with temperature in the range -0.6 < n< -1.9. Thus, less concentrated chelate solutions react faster with calcite, and the effect of chelate dilution becomes less pronounced with a temperature increase. For example, three times dilution of pH=3.7 commercial GLDA solution—from commonly used 50 vol% (0.85 M) to 16.7 vol% (0.28 M)—increases calcite dissolution rate 8.4, 4.9, 2.7, and 2.0 times at 98.6, 116.6, 134.6, and 188.6°F, respectively. Dilution of pH=5.0 EDTA and pH=3.5 DTPA from 0.25 M to 0.1 M increases the dissolution rate of calcite 1.4-3.1 times at 98.6-188.6°F. Probable reasons for such an unusual reaction behavior are discussed in the paper. Presented results are integral for designing the stimulation operations in carbonate reservoir rocks and the removal of carbonate scales.



2021 ◽  
Vol 17 (30) ◽  
pp. 61
Author(s):  
Daniele Di Lorenzo

A crisis induces Project Managers to use, increasingly, a specific “language” that is born from the union of two dimensions, technical-operative modalities and the mindset. The goal is to properly react to the crisis, like a pandemic scenario will. This approach directly involves the usage of “triad” (Reaction-Execution-Results) and micro-goals concepts in order to maximize the effectiveness and efficiency of the Project Manager actions within time windows. Project management is one of most important discipline in a company, especially where the project is the soul of the business and the center of the employees’ dynamic. This paper focuses on the “interfaces” between project management and other company functions. It analyzes how the “language” could induce reaction behavior based on the time-constraints and micro-goal modus operandi and how the company dynamic could change its behavioral habits towards the same common company purpose: the success of projects.





2021 ◽  
Vol 57 (5) ◽  
pp. 607-619
Author(s):  
L.-Y. Dong ◽  
Zh.-J. Wang ◽  
Y.-C. Xiao ◽  
X.-Zh. Tang ◽  
X.-J. Zhang ◽  
...  


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5021
Author(s):  
Irmgard Frank ◽  
Ebrahim Nadimi

Electrolysis is potentially a valuable tool for cleansing waste water. One might even hope that it is possible to synthesize valuable products in this way. The question is how the reaction conditions can be chosen to obtain desired compounds. In the present study we use Car–Parrinello molecular dynamics to simulate the reaction of nucleobases under electrolytic conditions. We use our own scheme (F. Hofbauer, I. Frank, Chem. Eur. J., 18, 277, 2012) for simulating the conditions after the electron transfer in a self-consistent field calculation. This scheme was employed previously to the electrolysis of pure water and of polluted solutions. On the picosecond timescale, we find a strongly different reaction behavior for each of the four nucleobases contained in DNA.



Sign in / Sign up

Export Citation Format

Share Document