scholarly journals Optimal power allocation for complex field network coding scheme with the K- th best relay selection

2012 ◽  
Vol 20 (4) ◽  
pp. 255-260
Author(s):  
Xi Cai ◽  
Pingzhi Fan ◽  
Qingchun Chen
2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Yulun Cheng ◽  
Longxiang Yang ◽  
Hongbo Zhu

Complex field network coding (CFNC) enables signal transmission and information fusion to be operated over nonorthogonal channels, which essentially improves both the bandwidth efficiency and transmission reliability of the wireless sensor networks (WSNs). This paper investigates the power allocation for the CFNC assisted WSNs. By improving the accuracy of the approximation for Q function, the closed-form expression of the pairwise error probability bound for the considered network is derived, so as to improve the optimization efficiency of the power allocation. On the basis of the expression, the relay power coefficient is optimized under the fixed power constraint. Besides, the impacts of the topology parameters on the power allocation are also analyzed accordingly. Simulations demonstrate that the proposed power allocation outperforms the benchmark in terms of the detection performance. The obtained expression of the power coefficient and insights can provide useful suggestions for the power allocation design of the CFNC assisted WSNs.


2014 ◽  
Vol 986-987 ◽  
pp. 2041-2047
Author(s):  
Ren Gang Yuan ◽  
Li Li Chu ◽  
Chuang Li ◽  
Ling Li Cao

In this letter, an optimal power allocation in the two-way relay channel of four transmission nodes employing the physical-layer network coding (PNC) protocol is proposed to improve the network sum-rate of the two-way relay system. The optimal power allocation is obtained by maximizing the network sum-rate of the PNC protocol under a sum-power constraint in a Rayleigh fading channel environment. Analytical and simulation results show that the proposed power allocation can improve the network sum-rate. Furthermore, compared with the equal power allocation scheme, the proposed power allocation scheme can achieve much higher network sum-rate performance.


Sign in / Sign up

Export Citation Format

Share Document