The effect of relaxin on myocardial ischaemia-reperfusion injury and histamine release in vitro and in vivo

1996 ◽  
Vol 45 (S1) ◽  
pp. S27-S28 ◽  
Author(s):  
E. Masini ◽  
D. Salvemini ◽  
L. Mugnai ◽  
M. G. Bello ◽  
D. Bani ◽  
...  
2019 ◽  
Vol 858 ◽  
pp. 172489 ◽  
Author(s):  
Louis Higgins ◽  
Siripong Palee ◽  
Siriporn C. Chattipakorn ◽  
Nipon Chattipakorn

2015 ◽  
Vol 128 (10) ◽  
pp. 679-693 ◽  
Author(s):  
Ni Xia ◽  
Jiao Jiao ◽  
Ting-Ting Tang ◽  
Bing-Jie Lv ◽  
Yu-Zhi Lu ◽  
...  

Regulatory T-cells (Tregs) are generally regarded as key immunomodulators that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. However, its role in myocardial ischaemia/reperfusion injury (MIRI) remains unknown. The purpose of the present study was to determine whether Tregs exert a beneficial effect on mouse MIRI. We examined the role of Tregs in murine MIRI by depletion using ‘depletion of regulatory T-cell’ (DEREG) mice and adoptive transfer using Forkhead box P3 (Foxp3)–GFP knockin mice and the mechanisms of cardio protection were further studied in vivo and in vitro. Tregs rapidly accumulated in murine hearts following MIRI. Selective depletion of Tregs in the DEREG mouse model resulted in aggravated MIRI. In contrast, the adoptive transfer of in vitro-activated Tregs suppressed MIRI, whereas freshly isolated Tregs had no effect. Mechanistically, activated Treg-mediated protection against MIRI was not abrogated by interleukin (IL)-10 or transforming growth factor (TGF)-β1 inhibition but was impaired by the genetic deletion of cluster of differentiation 39 (CD39). Moreover, adoptive transfer of in vitro-activated Tregs attenuated cardiomyocyte apoptosis, activated a pro-survival pathway involving Akt and extracellular-signal-regulated kinase (ERK) and inhibited neutrophil infiltration, which was compromised by CD39 deficiency. Finally, the peripheral blood mononuclear cells of acute myocardial infarction (AMI) patients after primary percutaneous coronary intervention (PCI) revealed a decrease in CD4+CD25+CD127low Tregs and a relative increase in CD39+ cells within the Treg population. In conclusion, our data validated a protective role for Tregs in MIRI. Moreover, in vitro-activated Tregs ameliorated MIRI via a CD39-dependent mechanism, representing a putative therapeutic strategy.


Phytomedicine ◽  
2019 ◽  
Vol 54 ◽  
pp. 27-42 ◽  
Author(s):  
Ramona D'amico ◽  
Roberta Fusco ◽  
Enrico Gugliandolo ◽  
Marika Cordaro ◽  
Rosalba Siracusa ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Minghua Deng ◽  
Jingyuan Wang ◽  
Hao Wu ◽  
Menghao Wang ◽  
Ding Cao ◽  
...  

Background. Liver ischaemia-reperfusion injury (IRI) remains a problem in liver transplantation. Interleukin-4 (IL-4) has been found to reduce liver IRI, but the exact mechanism remains unclear. Methods. Donor livers were infused with recombinant IL-4 or normal saline during cold storage, and the hepatocellular apoptosis and the inflammatory response were detected. The effect of IL-4 treatment on Kupffer cells (KCs) polarization and expression of the STAT6-JMJD3 pathway was evaluated in vivo and in vitro. KCs in donor livers were depleted by clodronate liposome treatment or JMJD3 was inhibited by GSK-J4 before liver transplantation to determine whether the protective effect of IL-4 treatment was dependent on KCs. Results. IL-4 treatment decreased sALT and sAST levels and alleviated hepatocellular apoptosis and inflammation at 6 h after liver transplantation. IL-4 treatment induced KCs alternatively activated (M2) polarization in vitro and in vivo, and the expression of STAT6 and JMJD3 was increased. JMJD3 knockdown abolished KCs M2 polarization and reduced the antiapoptotic and anti-inflammatory effects induced by IL-4 treatment in vitro. In addition, the protection of IL-4 treatment against IRI induced by liver transplantation was significantly reduced after the depletion of KCs or the inhibition of JMJD3 in donor livers. Conclusions. IL-4 treatment-induced KCs M2 polarization was dependent on the STAT6-JMJD3 pathway and protected liver grafts from IRI after liver transplantation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lili Xiao ◽  
Yulei Gu ◽  
Gaofei Ren ◽  
Linlin Chen ◽  
Liming Liu ◽  
...  

Evidence suggests that miR-146a is implicated in the pathogenesis of cardiovascular diseases; however, the role of miR-146a in myocardial ischaemia reperfusion (I/R) injury is unclear. The aim of this study was to explore the functional role of miR-146a in myocardial ischaemia reperfusion injury and the underlying mechanism. C57BL/6J mice were subjected to 45 min of ischaemia and 1 week of reperfusion to establish a myocardial I/R injury model. A miR-146a mimic (0.5 mg/kg) was administered intravenously at the beginning of the ischaemia process. Neonatal rat cardiomyocytes were also subjected to hypoxia/reperfusion (H/R). Cells were treated with the miR-146a mimic or antagonist. As a result, the miR-146a mimic attenuated H/R-induced cardiomyocyte injury, as evidenced by increased cell viability and reduced lactate dehydrogenase (LDH) levels. In addition, the miR-146a mimic inhibited oxidative stress in cells suffering from H/R injury. Moreover, the miR-146a antagonist exerted adverse effects in vitro. In mice with myocardial I/R injury, the miR-146a mimic preserved cardiac function and reduced the infarction area and fibrosis. Moreover, the miR-146a mimic decreased the inflammatory response and reactive oxygen species (ROS) accumulation in mouse hearts. Mechanistically, we found that miR-146a directly regulated the transcription of NOX4, which subsequently affected P38 signalling in cardiomyocytes. When we knocked down NOX4, the effects of the miR-146a antagonist in worsening the cell condition were counteracted in in vitro experiments. Taken together, the results suggest that miR-146a protects against myocardial ischaemia reperfusion injury by inhibiting NOX4 signalling. The miR-146a mimic may become a potential therapeutic approach for patients with myocardial ischaemia reperfusion.


Sign in / Sign up

Export Citation Format

Share Document