hepatocellular apoptosis
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 17 (9) ◽  
pp. e1009960
Author(s):  
Lu Sun ◽  
You Li ◽  
Ichiro Misumi ◽  
Olga González-López ◽  
Lucinda Hensley ◽  
...  

HAV-infected Ifnar1-/- mice recapitulate many of the cardinal features of hepatitis A in humans, including serum alanine aminotransferase (ALT) elevation, hepatocellular apoptosis, and liver inflammation. Previous studies implicate MAVS-IRF3 signaling in pathogenesis, but leave unresolved the role of IRF3-mediated transcription versus the non-transcriptional, pro-apoptotic activity of ubiquitylated IRF3. Here, we compare the intrahepatic transcriptomes of infected versus naïve Mavs-/- and Ifnar1-/- mice using high-throughput sequencing, and identify IRF3-mediated transcriptional responses associated with hepatocyte apoptosis and liver inflammation. Infection was transcriptionally silent in Mavs-/- mice, in which HAV replicates robustly within the liver without inducing inflammation or hepatocellular apoptosis. By contrast, infection resulted in the upregulation of hundreds of genes in Ifnar1-/- mice that develop acute hepatitis closely modeling human disease. Upregulated genes included pattern recognition receptors, interferons, chemokines, cytokines and other interferon-stimulated genes. Compared with Ifnar1-/- mice, HAV-induced inflammation was markedly attenuated and there were few apoptotic hepatocytes in livers of infected Irf3S1/S1Ifnar1-/- mice in which IRF3 is transcriptionally-inactive due to alanine substitutions at Ser-388 and Ser-390. Although transcriptome profiling revealed remarkably similar sets of genes induced in Irf3S1/S1Ifnar1-/- and Ifnar1-/- mice, a subset of genes was differentially expressed in relation to the severity of the liver injury. Prominent among these were both type 1 and type III interferons and interferon-responsive genes associated previously with apoptosis, including multiple members of the ISG12 and 2’-5’ oligoadenylate synthetase families. Ifnl3 and Ifnl2 transcript abundance correlated strongly with disease severity, but mice with dual type 1 and type III interferon receptor deficiency remained fully susceptible to liver injury. Collectively, our data show that IRF3-mediated transcription is required for HAV-induced liver injury in mice and identify key IRF3-responsive genes associated with pathogenicity, providing a clear distinction from the transcription-independent role of IRF3 in liver injury following binge exposure to alcohol.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250578
Author(s):  
Yi Chen ◽  
Zhiwei Xu ◽  
Yanli Zeng ◽  
Junping Liu ◽  
Xuemei Wang ◽  
...  

Autophagy is the primary intracellular catabolic process for degrading and recycling long-lived proteins and damaged organelles, which maintains cellular homeostasis. Autophagy has key roles in development and differentiation. By using the mouse with liver specific knockout of autophagy related gene 5 (Atg5), a gene essential for autophagy, we investigated the possible role of autophagy in liver regeneration after 70% partial hepatectomy (PHx). Ablation of autophagy significantly impaired mouse liver regeneration, and this impairment was associated with reduced hepatocellular proliferation rate, down-regulated expression of cyclins and tumor suppressors, and increased hepatocellular apoptosis via the intrinsic apoptotic pathway. Ablation of autophagy does not affect IL-6 and TNF-α response after PHx, but the altered hepatic and systemic metabolic responses were observed in these mice, including reduced ATP and hepatic free fatty acid levels in the liver tissue, increased glucose level in the serum. Autophagy is required to promote hepatocellular proliferation by maintaining normal hepatic and systemic metabolism and suppress hepatocellular apoptosis in liver regeneration.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Noriko Suzuki-Kemuriyama ◽  
Akari Abe ◽  
Kiniko Uno ◽  
Shuji Ogawa ◽  
Atsushi Watanabe ◽  
...  

Abstract Background Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Efforts have focused on reducing the intake of trans fatty acids (TFAs) because of potential hazards to human health and the increased risk for NASH. However, the health benefits of reducing dietary TFAs have not been fully elucidated. Here, the effects of TFAs vs. a substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF) were investigated. Methods Mice were fed CDAA-HF containing shortening with TFAs (CDAA-HF-T(+)), CDAA-HF containing shortening without TFAs (CDAA-HF-T(−)), or a control chow for 13 or 26 weeks. Results At week 13, NASH was induced in mice by feeding CDAA-HF-T(+) containing TFAs or CDAA-HF-T(−) containing no TFAs, but rather mostly saturated fatty acids (FAs), as evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(−) induced a greater extent of hepatocellular apoptosis at week 13. At week 26, proliferative (preneoplastic and non-neoplastic) nodular lesions were more pronounced in mice fed CDAA-HF-T(−) than CDAA-HF-T(+). Conclusions Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs.


2020 ◽  
Author(s):  
Noriko Suzuki-Kemuriyama ◽  
Akari Abe ◽  
Kinuko Uno ◽  
Shuji Ogawa ◽  
Atsushi Watanabe ◽  
...  

Abstract Background: Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Trans fatty acid (TFA) is hazardous for human health and a risk factor of NASH; thus, efforts have focused on reducing its intake. However, the health benefits of reducing dietary TFA are not fully elucidated. We investigated effects of TFA and its substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF). Methods: Mice were fed CDAA-HF containing shortening with TFA (CDAA-HF-T(+)), CDAA-HF containing shortening with a TFA substitute (CDAA-HF-T(−)), or a control chow for 13/26 weeks. Results: CDAA-HF-T(+) contained TFA, whereas CDAA-HF-T(−) contained no TFA and much saturated fatty acids. CDAA-HF-T(+) and CDAA-HF-T(−) induced NASH in mice, evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(−) induced more hepatocellular apoptosis and proliferative (preneoplastic and non-neoplastic) nodular lesions than CDAA-HF-T(+). Conclusions: Thus, replacement of dietary TFA with its substitute does not prevent but aggravates nutritionally induced NASH in mice, at least under the present conditions. Attention should be paid regarding future TFA substitute use in humans, and a fatty acid balance is likely more important than the particular types of fatty acids.


Author(s):  
Oksana Koļesova ◽  
Monta Madelāne ◽  
Ilze Ekšteina ◽  
Aleksandrs Koļesovs ◽  
Angelika Krūmiņa ◽  
...  

AbstractCytokeratin 18 (CK18) is a specific marker of hepatocellular apoptosis, which is a useful noninvasive indicator of liver fibrosis in the HIV/HCV group. However, data on the CK18 level in serum are limited for this group. This study demonstrated CK18 levels in serum in HIV/HCV co-infected and HIV mono-infected patients; investigated the association of CK18 levels with other non-invasive markers of liver fibrosis; and presents CK18 dynamics in a four-month-long period. The sample included 273 patients with HIV infection (128 of them were with HIV/HCV co-infection) aged from 23 to 65 (35% females). Levels of hyaluronic acid, CK18, ALT, and AST were determined in serum, and the FIB4 index was calculated. All markers had higher levels in the HIV/HCV group than in the HIV mono-infection group. The HIV/HCV group demonstrated coherent correlations among the markers and their associations with the level of CK18 than the HIV mono-infection group. During the four-month-long period, the CK18 level in serum showed no significant changes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Minghua Deng ◽  
Jingyuan Wang ◽  
Hao Wu ◽  
Menghao Wang ◽  
Ding Cao ◽  
...  

Background. Liver ischaemia-reperfusion injury (IRI) remains a problem in liver transplantation. Interleukin-4 (IL-4) has been found to reduce liver IRI, but the exact mechanism remains unclear. Methods. Donor livers were infused with recombinant IL-4 or normal saline during cold storage, and the hepatocellular apoptosis and the inflammatory response were detected. The effect of IL-4 treatment on Kupffer cells (KCs) polarization and expression of the STAT6-JMJD3 pathway was evaluated in vivo and in vitro. KCs in donor livers were depleted by clodronate liposome treatment or JMJD3 was inhibited by GSK-J4 before liver transplantation to determine whether the protective effect of IL-4 treatment was dependent on KCs. Results. IL-4 treatment decreased sALT and sAST levels and alleviated hepatocellular apoptosis and inflammation at 6 h after liver transplantation. IL-4 treatment induced KCs alternatively activated (M2) polarization in vitro and in vivo, and the expression of STAT6 and JMJD3 was increased. JMJD3 knockdown abolished KCs M2 polarization and reduced the antiapoptotic and anti-inflammatory effects induced by IL-4 treatment in vitro. In addition, the protection of IL-4 treatment against IRI induced by liver transplantation was significantly reduced after the depletion of KCs or the inhibition of JMJD3 in donor livers. Conclusions. IL-4 treatment-induced KCs M2 polarization was dependent on the STAT6-JMJD3 pathway and protected liver grafts from IRI after liver transplantation.


2019 ◽  
Vol 17 (12) ◽  
pp. 1245-1256 ◽  
Author(s):  
Yuting Jin ◽  
Changyong Li ◽  
Dongwei Xu ◽  
Jianjun Zhu ◽  
Song Wei ◽  
...  

AbstractNotch signaling plays important roles in the regulation of immune cell functioning during the inflammatory response. Activation of the innate immune signaling receptor NLRP3 promotes inflammation in injured tissue. However, it remains unknown whether Jagged1 (JAG1)-mediated myeloid Notch1 signaling regulates NLRP3 function in acute liver injury. Here, we report that myeloid Notch1 signaling regulates the NLRP3-driven inflammatory response in ischemia/reperfusion (IR)-induced liver injury. In a mouse model of liver IR injury, Notch1-proficient (Notch1FL/FL) mice receiving recombinant JAG1 showed a reduction in IR-induced liver injury and increased Notch intracellular domain (NICD) and heat shock transcription factor 1 (HSF1) expression, whereas myeloid-specific Notch1 knockout (Notch1M-KO) aggravated hepatocellular damage even with concomitant JAG1 treatment. Compared to JAG1-treated Notch1FL/FL controls, Notch1M-KO mice showed diminished HSF1 and Snail activity but augmented NLRP3/caspase-1 activity in ischemic liver. The disruption of HSF1 reduced Snail activation and enhanced NLRP3 activation, while the adoptive transfer of HSF1-expressing macrophages to Notch1M-KO mice augmented Snail activation and mitigated IR-triggered liver inflammation. Moreover, the knockdown of Snail in JAG1-treated Notch1FL/FL livers worsened hepatocellular functioning, reduced TRX1 expression and increased TXNIP/NLRP3 expression. Ablation of myeloid Notch1 or Snail increased ASK1 activation and hepatocellular apoptosis, whereas the activation of Snail increased TRX1 expression and reduced TXNIP, NLRP3/caspase-1, and ROS production. Our findings demonstrated that JAG1-mediated myeloid Notch1 signaling promotes HSF1 and Snail activation, which in turn inhibits NLRP3 function and hepatocellular apoptosis leading to the alleviation of IR-induced liver injury. Hence, the Notch1/HSF1/Snail signaling axis represents a novel regulator of and a potential therapeutic target for liver inflammatory injury.


Sign in / Sign up

Export Citation Format

Share Document