VPN on DCE: From reference configuration to implementation

Author(s):  
Jean -Paul Gaspoz ◽  
Constant Gbaguidi ◽  
Jens Meinköhn
Author(s):  
Sofia Canola ◽  
Yasi Dai ◽  
Fabrizia Negri

Conjugated singlet ground state diradicals have received remarkable attention owing to their potential applications in optoelectronic devices. A distinctive character of these systems is the location of the double exciton state, a low lying excited state dominated by the doubly excited H,H→L,L configuration, which may influence optical and other photophysical properties. In this contribution we investigate this specific excited state, for a series of recently synthesized conjugated diradicals, employing time dependent density functional theory based on the unrestricted parallel spin reference configuration in the spin-flip formulation (SF-TDDFT) and standard TD calculations based on the unrestricted antiparallel spin reference configuration (TDUDFT). The quality of the computed results is assessed considering diradical and multiradical descriptors and the excited state wavefunction composition.


2007 ◽  
Vol 3 (1) ◽  
pp. 65-69 ◽  
Author(s):  
V.N. Glushkov

A singe Slater determinant consisting of restricted and unrestricted, in spins, parts is proposed to construct a reference configuration for singlet excited states having the same symmetry as the ground one. A partially restricted Hartree-Fock approach is developed to derive amended equations determining the spatial molecular orbitals for singlet excited states. They present the natural base to describe the electron correlation in excited states using the wellestablished spin-annihilated perturbation theories. The efficiency of the proposed method is demonstrated by calculations of electronic excitation energies for the Be atom and LiH molecule.


In considering the vibrational properties of a crystal, a rigorous finite transformation of the particle displacements from their reference configuration is introduced. This transformation shows that an arbitrary set of such displacements may be regarded as made up of a rotation, a translation, a homogeneous deformation of the reference configuration, and a set of inhomogeneous deformational orthogonal modes. For a three-dimensional crystal, there are 3 N – 12 such inhomogeneous modes, which, in the limit of a large crystal can be considered wave-like. In the usual treatment beginning with the cyclic boundary conditions, 3 N wave-like modes are assumed and rotational displacements, for example, must be ignored. The present treatment accounts satisfactorily for all degrees of freedom, including rotational. Because of the non-singular nature of the above transformation, the transformation of the above modes to the normal modes proves that some normal modes are admixtures of inhomogeneous and homogeneous modes and therefore cannot possibly satisfy the Born cyclic boundary conditions. The vibrational hamiltonian is shown to contain the elastic energy and the elastic–phonon interaction terms as well as the usual wave energies. In the limit of a large crystal, it is shown that, for all processes involving phonons, the homogeneous coordinates may be regarded as effectively static, in much the same way as, in a simple theory of the Earth–Sun motion, the Sun, because of its large inertial mass, is considered stationary and its position coordinates static. The above transformation enables the case of a crystal, free or confined in a container, to be satisfactorily discussed. It is proved that the quantum mean value of the tensor whose independent elements define the homogeneous coordinates is, in the limit of a large crystal, equal to the strain tensor of the container, when it is being used to deform the crystal by being itself homogeneously deformed. A rigorous quantum treatment of crystal elastic constants may then be developed. For practical use, the 3 N – 12 inhomogeneous modes may be assumed to obey the cyclic boundary conditions. Thus a satisfactory complete basic treatment of lattice dynamics may be given which accounts for all degrees of freedom including rotation.


Author(s):  
Morton E. Gurtin ◽  
Eliot Fried ◽  
Lallit Anand

Author(s):  
Morton E. Gurtin ◽  
Eliot Fried ◽  
Lallit Anand

2016 ◽  
Vol 08 (08) ◽  
pp. 1650099 ◽  
Author(s):  
Yuri Astapov ◽  
Glagolev Vadim ◽  
Khristich Dmitrii ◽  
Markin Alexey ◽  
Sokolova Marina

Variational formulation of a coupled thermomechanical problem of anisotropic solids for the case of nonisothermal finite deformations in a reference configuration is shown. The formulation of the problem includes: a condition of equilibrium flow of a deformation process in the reference configuration; an equation of a coupled heat conductivity in a variational form, in which an influence of deformation characteristics of a process on the temperature field is taken into account; constitutive relations for a thermohypoelastic material; kinematic and evolutional relations; initial and boundary conditions. The obtained solutions show the development of stress–strain state and temperature changing in axisymmetric bodies in the case of finite deformations.


Sign in / Sign up

Export Citation Format

Share Document