large crystal
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 1049 ◽  
pp. 39-44
Author(s):  
Andrey Chumaevskii ◽  
Denis Gurianov ◽  
Anastasiya Gusarova ◽  
Anna Zykova ◽  
Aleksandr Panfilov ◽  
...  

Model research tests of plastic deformation, fragmentation and flow of aluminum alloy material of Al-Mg-Sc-Zr system under high loaded friction in pair with a steel counterbody of a complex shape and comparison of the obtained result with the structure formed by friction stir welding have been carried out. The conducted studies show that the structure formed by extrusion of the material from the friction zone and its compaction in the channel of the counterbody is, in general, close in structure to the structure formed by friction stir welding of similar material. The distinguishing features of the structure formed in the model experiments on friction include the introduction into the stirring zone of material with deformed large-crystal structure, increased grain size of the stirring zone, the presence of defects and differences in the geometry of the stirring zone.


2021 ◽  
Vol 6 (3) ◽  
pp. 31
Author(s):  
Jean Galy ◽  
Samir F. Matar

AsF3E as a representative of a molecular crystal has been chosen to find the precise localization of the lone pair (LP) E centroid 4s2 of As3+ and to enlighten the behavior of lone pair triplets of fluorine atoms. Starting from stereochemistry rationale, Density Functional (DFT) electronic structure calculations yielding the electron localization (ELF) mapping led to precise large crystal structure evolutions from basic X-rays data (V = 267.2Å3 at 193K), to (V = 230.5Å3) and under Van der Waals forces (DEW) V = 206.4Å3, and then under pressure P, all illustrated with ELF maps and band structures. Calibrated pressures up to 100 GPa exhibit the remarkable shrinking of all inter-atomic distances including As-E from 0.94Å down to 0.46Å, while the major three bonds As-F1, As-F2 and As-F3 are continuously expanding. The resulting picture of the application of pressure on AsF3 molecular structure leads to the progressive immersion of the 4s2 doublet within the electronic cloud with an original new status of As with its 4s2 E expressed as [AsE]3+. The expanded size becomes close to big LP-free K+, Ba2+ cations or LP characterized bismuth cation: [BiE]3+, which appear inserted in cubes or square anti-prisms with coordination number 8 (CN8) or in tricapped trigonal prisms with CN9.


2021 ◽  
Author(s):  
Liya Zhou ◽  
Xiaoying Zhong ◽  
Hua Fan ◽  
Jiangying Lu ◽  
Yingjun Ou

Abstract In this work, SnS quantum dot (QDs) were added into the CH3NH3PbI3 (MAPI) perovskite precursor solution to fabricate MAPI/SnS QDs films with preferred (110) orientation and a perovskite film with large crystal size. This hybrid material showed increased light harvesting ability and a red shift with respect to the number of SnS QDs. As a result, an enhanced performance was achieved in the perovskite solar cells (PSCs) based on MAPI/SnS QDs prepared from the S5, exhibiting a maximum photoelectric conversion efficiency (PCE) of 10.15%, an open-circuit voltage (Voc) of 1.41 V and a fill factor (FF) of 65%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshifumi Imajo ◽  
Takashi Suemasu ◽  
Kaoru Toko

AbstractPolycrystalline Ge thin films have attracted increasing attention because their hole mobilities exceed those of single-crystal Si wafers, while the process temperature is low. In this study, we investigate the strain effects on the crystal and electrical properties of polycrystalline Ge layers formed by solid-phase crystallization at 375 °C by modulating the substrate material. The strain of the Ge layers is in the range of approximately 0.5% (tensile) to -0.5% (compressive), which reflects both thermal expansion difference between Ge and substrate and phase transition of Ge from amorphous to crystalline. For both tensile and compressive strains, a large strain provides large crystal grains with sizes of approximately 10 μm owing to growth promotion. The potential barrier height of the grain boundary strongly depends on the strain and its direction. It is increased by tensile strain and decreased by compressive strain. These findings will be useful for the design of Ge-based thin-film devices on various materials for Internet-of-things technologies.


2021 ◽  
Vol 77 (1) ◽  
pp. 11-18
Author(s):  
Montserrat Fàbrega-Ferrer ◽  
Ana Cuervo ◽  
Francisco J. Fernández ◽  
Cristina Machón ◽  
Rosa Pérez-Luque ◽  
...  

Medium-resolution cryo-electron microscopy maps, in particular when they include a significant number of α-helices, may allow the building of partial models that are useful for molecular-replacement searches in large crystallographic structures when the structures of homologs are not available and experimental phasing has failed. Here, as an example, the solution of the structure of a bacteriophage portal using a partial 30% model built into a 7.8 Å resolution cryo-EM map is shown. Inspection of the self-rotation function allowed the correct oligomerization state to be determined, and density-modification procedures using rotation matrices and a mask based on the cryo-EM structure were critical for solving the structure. A workflow is described that may be applicable to similar cases and this strategy is compared with direct use of the cryo-EM map for molecular replacement.


2021 ◽  
Vol 1016 ◽  
pp. 1091-1096
Author(s):  
Vaclav Paidar ◽  
Jaroslav Čapek

Geometric aspects of the shear processes in hexagonal metals are analysed. They can be divided into three groups: those localized essentially between neighbouring atomic planes, occurring in narrow slabs along particular atomic planes, or covering a large crystal volume. Obviously, dislocation glide and deformation twinning are principal types of such processes. On the geometrical level, the dislocation slip as well as twin propagation are controlled by Schmid factors. Since the sample loaded by external stress can sometimes give way to fracture (cleavage) under tensile stress, it has to be also mentioned. The main aim of this work is to show only on geometrical grounds for which sample orientation which process is more likely to occur. More complex shear processes that take place during double twinning are also briefly considered. In polycrystals, the shear phenomena lead to texture formation when the processes that control the behaviour of materials may be those that act in a similar way in single crystals.


2021 ◽  
Vol 23 (39) ◽  
pp. 22515-22525
Author(s):  
Zhongmin Yang ◽  
Xinghong Gong ◽  
Yujin Chen ◽  
Jianhua Huang ◽  
Yanfu Lin ◽  
...  

A record size large crystal of GdPO4 was successfully grown aided by theoretical calculations. A new formula was introduced to study the temperature-dependent Raman spectra, which revealed weak phonon–phonon interactions of GdPO4 up to 803 K.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 821
Author(s):  
Sun Young Ryu ◽  
In Hwan Oh ◽  
Sang Jin Cho ◽  
Shin Ae Kim ◽  
Hyun Kyu Song

High-quality crystals are essential to ensure high-resolution structural information. Protein crystals are controlled by many factors, such as pH, temperature, and the ion concentration of crystalline solutions. We previously reported the development of a device dedicated to protein crystallization. In the current study, we have further modified and improved our device. Exposure to external magnetic field leads to alignment of the crystal toward a preferred direction depending on the magnetization energy. Each material has different magnetic susceptibilities depending on the individual direction of their unit crystal cells. One of the strategies to acquire a large crystal entails controlling the nucleation rate. Furthermore, exposure of a crystal to a magnetic field may lead to new morphologies by affecting the crystal volume, shape, and quality.


Sign in / Sign up

Export Citation Format

Share Document