exciton state
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 3)

2D Materials ◽  
2021 ◽  
Author(s):  
Mitchell A Conway ◽  
Jack B Muir ◽  
Stuart K Earl ◽  
Matthias Wurdack ◽  
Rishabh Mishra ◽  
...  

Abstract The optical properties of atomically thin transition metal dichalcogenides (TMDCs) are dominated by Coulomb bound quasi-particles, such as excitons, trions, and biexcitons. Due to the number and density of possible states, attributing different spectral peaks to the specific origin can be difficult. In particular, there has been much conjecture around the presence, binding energy and/or nature of biexcitons in these materials. In this work, we remove any ambiguity in identifying and separating the optically excited biexciton in monolayer WS2 using two-quantum multidimensional coherent spectroscopy (2Q-MDCS), a technique that directly and selectively probes doubly-excited states, such as biexcitons. The energy difference between the unbound two-exciton state and the biexciton is the fundamental definition of biexciton binding energy and is measured to be 26 ± 2 meV. Furthermore, resolving the biexciton peaks in 2Q-MDCS allows us to identify that the biexciton observed here is composed of two bright excitons in opposite valleys.


2021 ◽  
Vol 119 (1) ◽  
pp. 013103
Author(s):  
Matthew C. DeCapua ◽  
Yueh-Chun Wu ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
Jun Yan

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1058
Author(s):  
Lei Hou ◽  
Philippe Tamarat ◽  
Brahim Lounis

Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Abderrezak Torche ◽  
Gabriel Bester

AbstractTransition metal dichalcogenides monolayers host strongly bounded Coulomb complexes such as exciton and trion due to charge confinement and screening reduction in two dimensions. Biexciton, a bound state of two electrons and two holes, has also been observed in these materials with a binding energy which is one order of magnitude larger than its counterpart in conventional semiconductors. Here, using first principles methods, we address the biexciton in WSe2 monolayer and unravel the important role of the electron-hole exchange interaction in dictating the valley character of biexciton states and their fine structure. In particular, the fundamental biexciton transition which is located between the exciton and trion peaks is shown to have a fine structure of 2.8 meV mainly due to the splitting of the dark exciton state under the intervalley electron-hole exchange interaction. Non equilibrium effects are also addressed and optical fingerprints of non-thermalized biexciton population are discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ioannis Paradisanos ◽  
Gang Wang ◽  
Evgeny M. Alexeev ◽  
Alisson R. Cadore ◽  
Xavier Marie ◽  
...  

AbstractEnergy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics. The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms. Here we measure light scattering and emission in tungsten diselenide monolayers close to the laser excitation energy (down to ~0.6 meV). We reveal a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state. We find a period ~15 meV for 7 peaks below (Stokes) and 5 peaks above (anti-Stokes) the laser excitation energy, with a strong temperature dependence. These are assigned to phonon cascades, whereby carriers undergo phonon-induced transitions between real states above the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the Λ-valley of the Brillouin zone participate in the cascade process of tungsten diselenide monolayers. This provides a fundamental understanding of the first stages of carrier–phonon interaction, useful for optoelectronic applications of layered semiconductors.


2021 ◽  
Vol 3 (19) ◽  
pp. 5676-5682
Author(s):  
P. Riya Mol ◽  
Prahalad Kanti Barman ◽  
Prasad V. Sarma ◽  
Abhishek S. Kumar ◽  
Satyam Sahu ◽  
...  

The brightening of a dark exciton state in the MoS2 layer due to doping and charge transfer from WS2 to this dark state gives rise to circularly polarized emission, from a MoS2/WS2 heterostructure, with helicity opposite to that of the excitation.


2020 ◽  
Vol 124 (49) ◽  
pp. 27130-27135
Author(s):  
Xiaoman Ma ◽  
Peng Shen ◽  
Ya-Nan Wang ◽  
Fang Pan ◽  
Guangde Chen ◽  
...  
Keyword(s):  
The Self ◽  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Philippe Tamarat ◽  
Lei Hou ◽  
Jean-Baptiste Trebbia ◽  
Abhishek Swarnkar ◽  
Louis Biadala ◽  
...  

AbstractCesium lead halide perovskites exhibit outstanding optical and electronic properties for a wide range of applications in optoelectronics and for light-emitting devices. Yet, the physics of the band-edge exciton, whose recombination is at the origin of the photoluminescence, is not elucidated. Here, we unveil the exciton fine structure of individual cesium lead iodide perovskite nanocrystals and demonstrate that it is governed by the electron-hole exchange interaction and nanocrystal shape anisotropy. The lowest-energy exciton state is a long-lived dark singlet state, which promotes the creation of biexcitons at low temperatures and thus correlated photon pairs. These bright quantum emitters in the near-infrared have a photon statistics that can readily be tuned from bunching to antibunching, using magnetic or thermal coupling between dark and bright exciton sublevels.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
T. P. Lyons ◽  
D. Gillard ◽  
A. Molina-Sánchez ◽  
A. Misra ◽  
F. Withers ◽  
...  

AbstractSemiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe2 and CrBr3 in photoluminescence, whereby the valley polarization of the MoSe2 trion state conforms closely to the local CrBr3 magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes. Going further, we uncover by both the magneto-optical Kerr effect and photoluminescence a domain-like spatial topography of contrasting valley polarization, which we infer to be labyrinthine or otherwise highly intricate, with features smaller than 400 nm corresponding to our optical resolution. Our findings offer a unique insight into the interplay between short-lived valley excitons and spin-dependent interlayer tunneling, while also highlighting MoSe2 as a promising candidate to optically interface with exotic spin textures in van der Waals structures.


Sign in / Sign up

Export Citation Format

Share Document