Numerical simulation of transition in a three-dimensional boundary layer

Author(s):  
Mujeeb R. Malik
1973 ◽  
Vol 95 (3) ◽  
pp. 415-421 ◽  
Author(s):  
A. J. Wheeler ◽  
J. P. Johnston

Predictions have been made for a variety of experimental three-dimensional boundary layer flows with a single finite difference method which was used with three different turbulent stress models: (i) an eddy viscosity model, (ii) the “Nash” model, and (iii) the “Bradshaw” model. For many purposes, even the simplest stress model (eddy viscosity) was adequate to predict the mean velocity field. On the other hand, the profile of shear stress direction was not correctly predicted in one case by any model tested. The high sensitivity of the predicted results to free stream pressure gradient in separating flow cases is demonstrated.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


Sign in / Sign up

Export Citation Format

Share Document