Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms

Author(s):  
R. L. Moss ◽  
G. M. Diffee ◽  
M. L. Greaser
2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


2021 ◽  
Author(s):  
Malek Kammoun ◽  
Philippe Pouletaut ◽  
Sandrine Morandat ◽  
Malayannan Subramaniam ◽  
John R. Hawse ◽  
...  

Author(s):  
Dennis R. Claflin ◽  
Stuart M. Roche ◽  
Jonathan P. Gumucio ◽  
Christopher L. Mendias ◽  
Susan V. Brooks

1996 ◽  
Vol 81 (1) ◽  
pp. 123-132 ◽  
Author(s):  
V. J. Caiozzo ◽  
F. Haddad ◽  
M. J. Baker ◽  
R. E. Herrick ◽  
N. Prietto ◽  
...  

This study examined the effects of microgravity (14 days) on 1) the contractile properties of the soleus (Sol), an antigravity skeletal muscle; and 2) the myosin heavy chain (MHC) protein and mRNA isoform content of the Sol, vastus intermedius (VI), plantaris (Plan), and tibialis anterior (TA) muscles. The force-velocity relationships of the flight Sol muscles had a significant reduction in maximal isometric tension (-37%) and a corresponding increase in maximal shortening velocity (+20%). Additionally, the force-frequency relationship of the flight Sol muscles was shifted to the right of the ground-based control group. Microgravity had the greatest effect on muscle fiber composition in the Sol muscle, with a reduction in slow muscle fibers and a corresponding increase in muscle fibers categorized as hybrid fibers. The estimated absolute MHC isoform content was altered to the greatest extent in the Sol and VI muscles, with significant decreases and elevations in the slow type I and fast type IIX MHC protein isoforms, respectively. Consistent with the protein data, both the flight Sol and VI muscles exhibited significant elevations in the fast type IIX MHC mRNA isoform. In contrast, however, the flight Plan and TA groups had significant increases in the fast type IIB MHC mRNA isoform content without corresponding changes at the protein level. The results of this study suggest that spaceflight of even short duration produces important changes in the contractile properties of antigravity skeletal muscle. These changes are mediated by alterations in MHC phenotype and reductions in muscle mass. In some instances, the alterations in MHC mRNA isoform content seemed to be uncoupled from those occurring at the protein level. This apparent uncoupling between mRNA and protein expression demonstrates that the effects of microgravity must be better understood at the transcriptional, translational, and post-translational levels.


Sign in / Sign up

Export Citation Format

Share Document