Comparison theorems for generalized moduli of continuity. Vector-valued measures

Author(s):  
Jan Boman
Author(s):  
Boris G. Aksenov ◽  
Yuri E. Karyakin ◽  
Svetlana V. Karyakina

Equations, which have nonlinear nonmonotonic dependence of one of the coefficients on an unknown function, can describe processes of heat and mass transfer. As a rule, existing approximate methods do not provide solutions with acceptable accuracy. Numerical methods do not involve obtaining an analytical expression for the unknown function and require studying the convergence of the algorithm used. The value of absolute error is uncertain. The authors propose an approximate method for solving such problems based on Westphal comparison theorems. The comparison theorems allow finding upper and lower bounds of the unknown exact solution. A special procedure developed for the stepwise improvement of these bounds provide solutions with a given accuracy. There are only a few problems for equations with nonlinear nonmonotonic coefficients for which the exact solution has been obtained. One of such problems, presented in this article, shows the efficiency of the proposed method. The results prove that the proposed method for obtaining bounds of the solution of a nonlinear nonmonotonic equation of parabolic type can be considered as a new method of the approximate analytical solution having guaranteed accuracy. In addition, the proposed here method allows calculating the maximum deviation from the unknown exact solution of the results of other approximate and numerical methods.


Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3237-3243
Author(s):  
In Hwang ◽  
In Kim ◽  
Sumin Kim

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space H2Cn and the left coprime factorization of its symbol. Given a subset F ? H2Cn, we also consider the smallest invariant subspace S*F of the backward shift S* that contains F.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


1999 ◽  
Vol 6 (4) ◽  
pp. 307-322
Author(s):  
L. Gogoladze

Abstract Inequalities are derived which enable one to estimate integral moduli of continuity of functions of several variables in terms of Fourier coefficients.


Sign in / Sign up

Export Citation Format

Share Document