Author(s):  
Boris G. Aksenov ◽  
Yuri E. Karyakin ◽  
Svetlana V. Karyakina

Equations, which have nonlinear nonmonotonic dependence of one of the coefficients on an unknown function, can describe processes of heat and mass transfer. As a rule, existing approximate methods do not provide solutions with acceptable accuracy. Numerical methods do not involve obtaining an analytical expression for the unknown function and require studying the convergence of the algorithm used. The value of absolute error is uncertain. The authors propose an approximate method for solving such problems based on Westphal comparison theorems. The comparison theorems allow finding upper and lower bounds of the unknown exact solution. A special procedure developed for the stepwise improvement of these bounds provide solutions with a given accuracy. There are only a few problems for equations with nonlinear nonmonotonic coefficients for which the exact solution has been obtained. One of such problems, presented in this article, shows the efficiency of the proposed method. The results prove that the proposed method for obtaining bounds of the solution of a nonlinear nonmonotonic equation of parabolic type can be considered as a new method of the approximate analytical solution having guaranteed accuracy. In addition, the proposed here method allows calculating the maximum deviation from the unknown exact solution of the results of other approximate and numerical methods.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Elena E. Berdysheva ◽  
Nira Dyn ◽  
Elza Farkhi ◽  
Alona Mokhov

AbstractWe introduce and investigate an adaptation of Fourier series to set-valued functions (multifunctions, SVFs) of bounded variation. In our approach we define an analogue of the partial sums of the Fourier series with the help of the Dirichlet kernel using the newly defined weighted metric integral. We derive error bounds for these approximants. As a consequence, we prove that the sequence of the partial sums converges pointwisely in the Hausdorff metric to the values of the approximated set-valued function at its points of continuity, or to a certain set described in terms of the metric selections of the approximated multifunction at a point of discontinuity. Our error bounds are obtained with the help of the new notions of one-sided local moduli and quasi-moduli of continuity which we discuss more generally for functions with values in metric spaces.


1999 ◽  
Vol 6 (4) ◽  
pp. 307-322
Author(s):  
L. Gogoladze

Abstract Inequalities are derived which enable one to estimate integral moduli of continuity of functions of several variables in terms of Fourier coefficients.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.


1986 ◽  
Vol 9 (1) ◽  
pp. 105-109
Author(s):  
Garret J. Etgen ◽  
Willie E. Taylor

This paper establishes an apparently overlooked relationship between the pair of fourth order linear equationsyiv−p(x)y=0andyiv+p(x)y=0, wherepis a positive, continuous function defined on[0,∞). It is shown that if all solutions of the first equation are nonoscillatory, then all solutions of the second equation must be nonoscillatory as well. An oscillation criterion for these equations is also given.


1970 ◽  
Vol 28 (2) ◽  
pp. 289-292 ◽  
Author(s):  
A. M. Fink
Keyword(s):  

Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

AbstractDeVore-Gopengauz-type operators have attracted some interest over the recent years. Here we investigate their relationship to shape preservation. We construct certain positive convolution-type operators Hn, s, j which leave the cones of j-convex functions invariant and give Timan-type inequalities for these. We also consider Boolean sum modifications of the operators Hn, s, j show that they basically have the same shape preservation behavior while interpolating at the endpoints of [−1, 1], and also satisfy Telyakovskiῐ- and DeVore-Gopengauz-type inequalities involving the first and second order moduli of continuity, respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov, Beatson, DeVore, Yu and Leviatan.


Sign in / Sign up

Export Citation Format

Share Document