Generalized functions on an open subset of En

Author(s):  
Hebe de Azevedo Biagioni
Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter includes some additional material on homotopies. In particular, for a smooth variety V, there exists an “inflation” homotopy, taking a simple point to the generic type of a small neighborhood of that point. This homotopy has an image that is properly a subset of unit vector V, and cannot be understood directly in terms of definable subsets of V. The image of this homotopy retraction has the merit of being contained in unit vector U for any dense Zariski open subset U of V. The chapter also proves the continuity of functions and homotopies using continuity criteria and constructs inflation homotopies before proving GAGA type results for connectedness. Additional results regarding the Zariski topology are given.


2020 ◽  
Vol 9 (4) ◽  
pp. 2209-2218
Author(s):  
T. G. Thange ◽  
S. S. Jadhav

2011 ◽  
Vol 8 (1) ◽  
pp. 275-286
Author(s):  
R.G. Yakupov ◽  
D.M. Zaripov

The stress-deformed state of the underground main pipeline under the action of seismic waves of an earthquake is considered. The generalized functions of seismic impulses are constructed. The pipeline motion equations are solved with used Laplace transformation by the time. Tensions and deformations of the pipeline have been determined. A numerical example is reviewed. Diagrams of change of the tension depending on earthquake force are provided in earthquake-points.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Perepechko

AbstractLet Y be a smooth del Pezzo surface of degree 3 polarized by a very ample divisor that is not proportional to the anticanonical one. Then the affine cone over Y is flexible in codimension one. Equivalently, such a cone has an open subset with an infinitely transitive action of the special automorphism group on it.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shrideh Khalaf Al-Omari ◽  
Serkan Araci

AbstractThis paper considers the definition and the properties of the generalized natural transform on sets of generalized functions. Convolution products, convolution theorems, and spaces of Boehmians are described in a form of auxiliary results. The constructed spaces of Boehmians are achieved and fulfilled by pursuing a deep analysis on a set of delta sequences and axioms which have mitigated the construction of the generalized spaces. Such results are exploited in emphasizing the virtual definition of the generalized natural transform on the addressed sets of Boehmians. The constructed spaces, inspired from their general nature, generalize the space of integrable functions of Srivastava et al. (Acta Math. Sci. 35B:1386–1400, 2015) and, subsequently, the extended operator with its good qualitative behavior generalizes the classical natural transform. Various continuous embeddings of potential interests are introduced and discussed between the space of integrable functions and the space of integrable Boehmians. On another aspect as well, several characteristics of the extended operator and its inversion formula are discussed.


1982 ◽  
Vol 2 (2) ◽  
pp. 139-158 ◽  
Author(s):  
S. G. Dani

AbstractLet(where t ε ℝ) and let μ be the G-invariant probability measure on G/Γ. We show that if x is a non-periodic point of the flow given by the (ut)-action on G/Γ then the (ut)-orbit of x is uniformly distributed with respect to μ; that is, if Ω is an open subset whose boundary has zero measure, and l is the Lebesque measure on ℝ then, as T→∞, converges to μ(Ω).


Sign in / Sign up

Export Citation Format

Share Document