Contraction principle in pseudo-uniform spaces

Author(s):  
Pedro Morales
2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


2020 ◽  
Vol 4 (1) ◽  
pp. 29-39
Author(s):  
Dilrabo Eshkobilova ◽  

Uniform properties of the functor Iof idempotent probability measures with compact support are studied. It is proved that this functor can be lifted to the category Unif of uniform spaces and uniformly continuous maps


2020 ◽  
Vol 9 (9) ◽  
pp. 7137-7148
Author(s):  
J. Moshahary ◽  
D. Kr. Mitra
Keyword(s):  

2009 ◽  
Vol 41 (5) ◽  
pp. 2399-2400 ◽  
Author(s):  
J. Martínez-Moreno ◽  
A. Roldán ◽  
C. Roldán

2003 ◽  
Vol 10 (2) ◽  
pp. 201-207
Author(s):  
V. Baladze
Keyword(s):  

Abstract In this paper theorems which give conditions for a uniform space to have an ARU-resolution are proved. In particular, a finitistic uniform space admits an ARU-resolution if and only if it has trivial uniform shape or it is an absolute uniform shape retract.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adisorn Kittisopaporn ◽  
Pattrawut Chansangiam ◽  
Wicharn Lewkeeratiyutkul

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation $AXB+CXD = E$ A X B + C X D = E , where $A,B,C,D,E$ A , B , C , D , E are conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation $AXB=C$ A X B = C , the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.


2021 ◽  
Vol 40 (5) ◽  
pp. 9977-9985
Author(s):  
Naeem Saleem ◽  
Hüseyin Işık ◽  
Salman Furqan ◽  
Choonkil Park

In this paper, we introduce the concept of fuzzy double controlled metric space that can be regarded as the generalization of fuzzy b-metric space, extended fuzzy b-metric space and controlled fuzzy metric space. We use two non-comparable functions α and β in the triangular inequality as: M q ( x , z , t α ( x , y ) + s β ( y , z ) ) ≥ M q ( x , y , t ) ∗ M q ( y , z , s ) . We prove Banach contraction principle in fuzzy double controlled metric space and generalize the Banach contraction principle in aforementioned spaces. We give some examples to support our main results. An application to existence and uniqueness of solution for an integral equation is also presented in this work.


2004 ◽  
Vol 11 (4) ◽  
pp. 613-633
Author(s):  
V. Baladze ◽  
L. Turmanidze

Abstract Border homology and cohomology groups of pairs of uniform spaces are defined and studied. These groups give an intrinsic characterization of Čech type homology and cohomology groups of the remainder of a uniform space.


2020 ◽  
Vol 18 (1) ◽  
pp. 1478-1490
Author(s):  
Ankit Gupta ◽  
Abdulkareem Saleh Hamarsheh ◽  
Ratna Dev Sarma ◽  
Reny George

Abstract New families of uniformities are introduced on UC(X,Y) , the class of uniformly continuous mappings between X and Y, where (X,{\mathcal{U}}) and (Y,{\mathcal{V}}) are uniform spaces. Admissibility and splittingness are introduced and investigated for such uniformities. Net theory is developed to provide characterizations of admissibility and splittingness of these spaces. It is shown that the point-entourage uniform space is splitting while the entourage-entourage uniform space is admissible.


Sign in / Sign up

Export Citation Format

Share Document