Weak convergence of stochastic integrals and differential equations

Author(s):  
Thomas G. Kurtz ◽  
Philip E. Protter
2021 ◽  
Vol 58 (2) ◽  
pp. 372-393
Author(s):  
H. M. Jansen

AbstractOur aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.


2019 ◽  
Vol 20 (03) ◽  
pp. 2050015 ◽  
Author(s):  
Hua Zhang

In this paper, we prove a moderate deviation principle for the multivalued stochastic differential equations whose proof are based on recently well-developed weak convergence approach. As an application, we obtain the moderate deviation principle for reflected Brownian motion.


Author(s):  
Jürgen Franke ◽  
Wolfgang Härdle ◽  
Christian M. Hafner

2021 ◽  
pp. 724-756
Author(s):  
James Davidson

The main object of this chapter is to prove the convergence of the covariances of stochastic processes with their increments to stochastic integrals with respect to Brownian motion. Some preliminary theory is given relating to random functionals on C, stochastic integrals, and the important Itô isometry. The main result is first proved for the tractable special cases of martingale difference increments and linear processes. The final section is devoted to proving the more difficult general case, of NED functions of mixing processes.


1996 ◽  
Vol 33 (04) ◽  
pp. 1061-1076 ◽  
Author(s):  
P. E. Kloeden ◽  
E. Platen ◽  
H. Schurz ◽  
M. Sørensen

In this paper statistical properties of estimators of drift parameters for diffusion processes are studied by modern numerical methods for stochastic differential equations. This is a particularly useful method for discrete time samples, where estimators can be constructed by making discrete time approximations to the stochastic integrals appearing in the maximum likelihood estimators for continuously observed diffusions. A review is given of the necessary theory for parameter estimation for diffusion processes and for simulation of diffusion processes. Three examples are studied.


Sign in / Sign up

Export Citation Format

Share Document