Topological theory of fixed points on infinite-dimensional manifolds

Author(s):  
Yu. G. Borisovich ◽  
Yu. E. Gliklikh
2019 ◽  
Vol 28 (2) ◽  
pp. 191-198
Author(s):  
T. M. M. SOW

It is well known that Krasnoselskii-Mann iteration of nonexpansive mappings find application in many areas of mathematics and know to be weakly convergent in the infinite dimensional setting. In this paper, we introduce and study an explicit iterative scheme by a modified Krasnoselskii-Mann algorithm for approximating fixed points of multivalued quasi-nonexpansive mappings in Banach spaces. Strong convergence of the sequence generated by this algorithm is established. There is no compactness assumption. The results obtained in this paper are significant improvement on important recent results.


2019 ◽  
Vol 22 (6) ◽  
pp. 1089-1099
Author(s):  
Motoko Kato

Abstract We give a criterion for group elements to have fixed points with respect to a semi-simple action on a complete CAT(0) space of finite topological dimension. As an application, we show that Thompson’s group T and various generalizations of Thompson’s group V have global fixed points when they act semi-simply on finite-dimensional complete CAT(0) spaces, while it is known that T and V act properly on infinite-dimensional CAT(0) cube complexes.


2007 ◽  
Vol 17 (12) ◽  
pp. 4261-4272 ◽  
Author(s):  
ZBIGNIEW GALIAS ◽  
PIOTR ZGLICZYŃSKI

In this work, we introduce the Krawczyk operator for infinite dimensional maps. We prove two properties of this operator related to the existence of zeros of the map. We also show how the Krawczyk operator can be used to prove the existence of periodic orbits of infinite dimensional discrete dynamical systems and for finding all periodic orbits with a given period enclosed in a specified region. As an example, we consider the Kot–Schaffer growth-dispersal model, for which we find all fixed points and period-2 orbits enclosed in the region containing the attractor observed numerically.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yan-Lai Song ◽  
Lu-Chuan Ceng

The purpose of this paper is to present two new forward-backward splitting schemes with relaxations and errors for finding a common element of the set of solutions to the variational inclusion problem with two accretive operators and the set of fixed points of strict pseudocontractions in infinite-dimensional Banach spaces. Under mild conditions, some weak and strong convergence theorems for approximating these common elements are proved. The methods in the paper are novel and different from those in the early and recent literature. Further, we consider the problem of finding a common element of the set of solutions of a mathematical model related to equilibrium problems and the set of fixed points of a strict pseudocontractions.


1983 ◽  
Vol 51 (2) ◽  
pp. 75-78 ◽  
Author(s):  
D. W. Mc Laughlin ◽  
J. V. Moloney ◽  
A. C. Newell

2020 ◽  
pp. 137-186
Author(s):  
J V Moloney ◽  
H Adachihara ◽  
D W McLaughlin ◽  
A C Newell

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Wei Li ◽  
Masahito Yamazaki

Abstract We find a new infinite class of infinite-dimensional algebras acting on BPS states for non-compact toric Calabi-Yau threefolds. In Type IIA superstring compactification on a toric Calabi-Yau threefold, the D-branes wrapping holomorphic cycles represent the BPS states, and the fixed points of the moduli spaces of BPS states are described by statistical configurations of crystal melting. Our algebras are “bootstrapped” from the molten crystal configurations, hence they act on the BPS states. We discuss the truncation of the algebra and its relation with D4-branes. We illustrate our results in many examples, with and without compact 4-cycles.


Sign in / Sign up

Export Citation Format

Share Document