Baryon current solving SU(3) charge-current algebra

Author(s):  
Hagen Kleinert

1967 ◽  
Vol 24 (2) ◽  
pp. 100-103 ◽  
Author(s):  
C.H. Albright




1968 ◽  
Author(s):  
B. Renner
Keyword(s):  


1969 ◽  
Vol 11 (1) ◽  
pp. 61-68 ◽  
Author(s):  
M. Böhm ◽  
D. Rein


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
David Osten

Abstract A classical Ed(d)-invariant Hamiltonian formulation of world-volume theories of half-BPS p-branes in type IIb and eleven-dimensional supergravity is proposed, extending known results to d ≤ 6. It consists of a Hamiltonian, characterised by a generalised metric, and a current algebra constructed s.t. it reproduces the Ed(d) generalised Lie derivative. Ed(d)-covariance necessitates the introduction of so-called charges, specifying the type of p-brane and the choice of section. For p > 2, currents of p-branes are generically non- geometric due to the imposition of U-duality, e.g. the M5-currents contain coordinates associated to the M2-momentum.A derivation of the Ed(d)-invariant current algebra from a canonical Poisson structure is in general not possible. At most, one can derive a current algebra associated to para-Hermitian exceptional geometry.The membrane in the SL(5)-theory is studied in detail. It is shown that in a generalised frame the current algebra is twisted by the generalised fluxes. As a consistency check, the double dimensional reduction from membranes in M-theory to strings in type IIa string theory is performed. Many features generalise to p-branes in SL(p + 3) generalised geometries that form building blocks for the Ed(d)-invariant currents.



Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 162-183
Author(s):  
Peter Markoš ◽  
Khandker Muttalib

We reviewed some recent ideas to improve the efficiency and power output of thermoelectric nano-devices. We focused on two essentially independent aspects: (i) increasing the charge current by taking advantage of an interplay between the material and the thermodynamic parameters, which is only available in the non-linear regime; and (ii) decreasing the heat current by using nanowires with surface disorder, which helps excite localized phonons at random positions that can strongly scatter the propagating phonons carrying the thermal current.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
X. R. Wang

AbstractSpin current is a very important tensor quantity in spintronics. However, the well-known spin-Hall effect (SHE) can only generate a few of its components whose propagating and polarization directions are perpendicular with each other and to an applied charge current. It is highly desirable in applications to generate spin currents whose polarization can be in any possible direction. Here anomalous SHE and inverse spin-Hall effect (ISHE) in magnetic systems are predicted. Spin currents, whose polarisation and propagation are collinear or orthogonal with each other and along or perpendicular to the charge current, can be generated, depending on whether the applied charge current is along or perpendicular to the order parameter. In anomalous ISHEs, charge currents proportional to the order parameter can be along or perpendicular to the propagating or polarization directions of the spin current.



1977 ◽  
Vol 15 (1) ◽  
pp. 121-128 ◽  
Author(s):  
A. A. Golestaneh
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document