scholarly journals Currents, charges and algebras in exceptional generalised geometry

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
David Osten

Abstract A classical Ed(d)-invariant Hamiltonian formulation of world-volume theories of half-BPS p-branes in type IIb and eleven-dimensional supergravity is proposed, extending known results to d ≤ 6. It consists of a Hamiltonian, characterised by a generalised metric, and a current algebra constructed s.t. it reproduces the Ed(d) generalised Lie derivative. Ed(d)-covariance necessitates the introduction of so-called charges, specifying the type of p-brane and the choice of section. For p > 2, currents of p-branes are generically non- geometric due to the imposition of U-duality, e.g. the M5-currents contain coordinates associated to the M2-momentum.A derivation of the Ed(d)-invariant current algebra from a canonical Poisson structure is in general not possible. At most, one can derive a current algebra associated to para-Hermitian exceptional geometry.The membrane in the SL(5)-theory is studied in detail. It is shown that in a generalised frame the current algebra is twisted by the generalised fluxes. As a consistency check, the double dimensional reduction from membranes in M-theory to strings in type IIa string theory is performed. Many features generalise to p-branes in SL(p + 3) generalised geometries that form building blocks for the Ed(d)-invariant currents.

1966 ◽  
Vol 147 (4) ◽  
pp. 1141-1144 ◽  
Author(s):  
Richard W. Griffith

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andreas P. Braun

Abstract We construct the M-Theory lifts of type IIA orientifolds based on K3-fibred Calabi-Yau threefolds with compatible involutions. Such orientifolds are shown to lift to M-Theory on twisted connected sum G2 manifolds. Beautifully, the two building blocks forming the G2 manifold correspond to the open and closed string sectors. As an application, we show how to use such lifts to explicitly study open string moduli. Finally, we use our analysis to construct examples of G2 manifolds with different inequivalent TCS realizations.


1969 ◽  
Vol 63 (2) ◽  
pp. 598-608
Author(s):  
B. Hamprecht

2017 ◽  
Vol 32 (05) ◽  
pp. 1750024 ◽  
Author(s):  
Hirotaka Sugawara

Quantum M-theory is formulated using the current algebra technique. The current algebra is based on a Kac–Moody algebra rather than usual finite dimensional Lie algebra. Specifically, I study the [Formula: see text] Kac–Moody algebra that was shown recently[Formula: see text] to contain all the ingredients of M-theory. Both the internal symmetry and the external Lorentz symmetry can be realized inside [Formula: see text], so that, by constructing the current algebra of [Formula: see text], I obtain both internal gauge theory and gravity theory. The energy–momentum tensor is constructed as the bilinear form of the currents, yielding a system of quantum equations of motion of the currents/fields. Supersymmetry is incorporated in a natural way. The so-called “field-current identity” is built in and, for example, the gravitino field is itself a conserved supercurrent. One unanticipated outcome is that the quantum gravity equation is not identical to the one obtained from the Einstein–Hilbert action.


1967 ◽  
Vol 50 (4) ◽  
pp. 1006-1009 ◽  
Author(s):  
A. Baracca ◽  
A. Bramón ◽  
A. Tiemblo
Keyword(s):  

2006 ◽  
Vol 21 (04) ◽  
pp. 950-953
Author(s):  
Bing An Li

A current algebra based effective chiral theory of pseudoscalar, vector, axial-vector mesons is reviewed. A new mechanism generating the masses and guage fixing terms of gauge boson is revealed from this effective theory. A EW theory without Higgs is proposed. The masses and gauge fixing terms of W and Z are dynamically generated. Three heavy scalar fields are dynamically generated too. They are ghosts.


Sign in / Sign up

Export Citation Format

Share Document