vector current
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 52)

H-INDEX

42
(FIVE YEARS 3)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 153
Author(s):  
Wenning Wang ◽  
Kejun Li ◽  
Kaiqi Sun ◽  
Jianjian Wang

With the increasing penetration of renewable energy into the power system, the voltage source converter (VSC) for integrating renewable energy has become the most common device in the electric network. However, the operating stability of the VSC is strongly dependent on its operating control strategy, which is also highly related to the strength of the AC system. Choosing the control strategy of VSC for different strengths of AC systems becomes an essential issue for maintaining the symmetry between high proportion of renewable energy integration and stable operation of AC system. In order to obtain the operation zones of the control strategies of the VSC under different strengths of AC system, in this paper, the two common VSC control strategies, vector current control (VCC) and power synchronization control (PSC), are compared. Firstly, the principle of VCC and PSC are introduced. Then, based on the short circuit ratio (SCR) and the power limit calculation under steady-state conditions of the VSC, the operation zones of the vector current control and power synchronization control are proposed. Finally, a medium voltage modular multilevel converter (MMC) system was built in PSCAD/EMTDC and the proposed operation zones of the VCC and PSC were tested by changing the SCR of the modified IEEE 33 bus system and analyzed via the critical short circuit ratio (CSCR) analysis, the small-signal stability analysis, and transient stability analysis. The results indicate that, as the SCR decreases, the VSC based on VCC is gradually worked into unstable conditions, while the stability of VSC based on PSC gradually increases. The analysis results provide a criterion for the converter operation strategy change that could significantly improve the operating stability of the VSC in the power system and realize the symmetry of the stability of the converter and the change of the strength of the AC system.


2021 ◽  
pp. 348-387
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We present the phenomenology of the weak interactions in a historical perspective, from Fermi’s four-fermion theory to the V−A current×current interaction. The experiments of C.S. Wu, which established parity violation, and M. Goldhaber, which measured the neutrino helicity, are described. We study in turn the leptonic, semi-leptonic and non-leptonic weak interactions. We introduce the concept of the conserved vector current and the partially conserved axial current and show that the latter is the result of spontaneously broken chiral symmetry with the pion the corresponding pseudo-Goldstone boson. We study Gell–Mann’s current algebra and derive the Adler–Weisberger relation. Strangeness changing weak interactions and the Cabibbo theory are described. We present a phenomenological analysis of CP-violation in the neutral kaon system and we end with the intermediate vector boson hypothesis.


2021 ◽  
Vol 13 (21) ◽  
pp. 4263
Author(s):  
Weifeng Sun ◽  
Qing Wang ◽  
Weimin Huang ◽  
Chenqing Fan ◽  
Yongshou Dai

The Doppler scatterometer is a new style of remote sensing tool that can provide current measurements over a wide swath for rapid global coverage. The existing current estimation method for Doppler scatterometry uses the maximum likelihood method to jointly derive the wind and current fields but shows high computational complexity. Moreover, the current radial speeds measured along two arbitrary observation azimuths are used to derive the vector current according to the parallelogram rule, which is not applicable for the case where two observation azimuths are not perpendicular. In this paper, a vector current velocity inversion method using an optimally selected observation azimuth combination—as well as a general current velocity calculation method—is proposed for Doppler scatterometry. Firstly, current radial speeds along several different observation azimuths are estimated using an interferometric phase difference matching method with low computational complexity. Then, two current radial components of each point are arbitrarily selected to estimate a preliminary current direction using the proposed vector current velocity derivation method. Finally, two observation azimuths that have the smallest intersection angles with the preliminarily estimated current direction are selected for vector current velocity determination. With the Ocean Surface Current Analyses Real-time (OSCAR) data as current input, vector current estimation experiments were conducted based on simulation analysis using an instrument conceptual design model for a pencil-beam scatterometer. The results show that the standard deviation of the estimated current velocity magnitude is 0.06 m/s. Compared with the reported results obtained by the existing method, the inversion accuracy of velocity magnitude is improved by 67%.


2021 ◽  
Vol 11 (21) ◽  
pp. 9784
Author(s):  
Mariusz Piotr Hetmańczyk ◽  
Julian Malaka

The article presents a method of generating key performance indicators related to electric motor energy efficiency on the basis of Big Data gathered and processed in a frequency converter. The authors proved that using the proposed solution, it is possible to specify the relation between the control mode of an electric drive and the control quality-energy consumption ratio in the start-up phase as well as in the steady operation with various mechanical loads. The tests were carried out on a stand equipped with two electric motors (one driving, the other used to apply the load by adjusting the parameters of the built-in brake). The measurements were made in two load cases, for motor control modes available in industrially applied frequency converters (scalar V/f, vector Voltage flux control without encoder, vector voltage flux control with encoder, vector current flux control, and vector current flux control with torque control). During the experiments, values of the current intensities (active and output), the actual frequency value, IxT utilization factor, relative torque, and the current rotational speed were measured and processed. Based on the data, the level of energy efficiency was determined for various control modes.


2021 ◽  
Author(s):  
Mahdieh S. Sadabadi ◽  
Mohammad Sharifzadeh ◽  
Majid Mehrasa ◽  
Seddik Bacha ◽  
Kamal Al-Haddad

Author(s):  
Mariusz Piotr Hetmanczyk ◽  
Julian Malaka

The article presents a method of generating Key Performance Indicators related to electric motor energy efficiency on the basis of Big Data gathered and processed in frequency converter. The authors proved that using the proposed solution it is possible to specify the relation between the control mode of an electric drive and the control quality-energy consumption ratio in the start-up phase as well as in the steady operation with various mechanical loads. The tests were carried out on a stand equipped with two electric motors (one driving, the other used to apply the load by adjusting the parameters of the built-in brake). The measurements were made in two load cases, for motor control modes available in industrially applied frequency converters (scalar V/f, vector Voltage Flux Control without encoder, vector Voltage Flux Control with encoder, vector Current Flux Control and Vector Current Flux Control with torque control). During the experiments values of current intensities (active and output), the actual frequency value, IxT utilization factor, relative torque and the current rotational speed were measured and processed. Based on the data the level of the energy efficiency was determined for various control modes.


Author(s):  
Hrushikesh V. Bihade

Abstract: Traditional DTC popular because of its simplicity, Robustness, and first torque response. However, it is associated by high THD, large torque ripples and variable switching frequency. Which leads the way to scope of research in traditional DTC drive. thus, to further raise the performance, a method based on minimum voltage vector error is proposed in this dissertation. To cut down the error value between voltage vector imposed on the machine terminal and reference voltage vector, the value of Duty ratio is effectively optimized by propose method. The Optimization process does not increase the complexity of method. The proposed method is simulated in MATLAB environment. Keywords: TDTC, MVE DTC, Torque ripples, voltage-vector, current THD


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Diogo Boito ◽  
Vicent Mateu ◽  
Marcus V. Rodrigues

Abstract We calculate the small-momentum expansion of vector, axial-vector, scalar, and pseudo-scalar heavy-quark current correlators in the large-β0 limit of QCD, extending the analysis of Grozin and Sturm beyond the vector current. Our results are used to study the higher-order behaviour of dimensionless ratios of vector and pseudo-scalar moments used for the precise extraction of the strong coupling, αs, from relativistic quarkonium sum rules and lattice data, respectively. We show that these ratios benefit from a partial cancellation of the leading renormalon singularities. Our results can guide the design of combinations of moments with improved perturbative behaviour.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4549
Author(s):  
Houshang Karimi ◽  
Aboutaleb Haddadi ◽  
Masoud Karimi-Ghartemani ◽  
Mahdieh Sadabadi

This paper presents a vector current controller (in the synchronous reference, or the dq, frame) with negative-sequence current injection capability for three-phase grid-connected converters. This capability is desired for the operation of the converter during unbalanced conditions and also for a certain type of islanding detection. The proposed controller first determines the double-frequency current references and then uses a sixth-order two-input two-output proportional-integral-resonance (PIR) structure, which is optimally designed. Compared with the existing similar approaches, the proposed controller has a simpler structure and more robust performance, e.g., against system parameter uncertainties and weak grid conditions. The proposed controller is developed for converters with both the L-type and LCL-type filters. For the LCL-type converter, a suboptimal partial state feedback control is also proposed to achieve robust stability and active damping of resonance poles without requiring additional sensors. Detailed experimental results are presented to illustrate the properties and performances of the proposed controller.


2021 ◽  
Vol 24 (2) ◽  
pp. 133-144
Author(s):  
Yu. D. Chernichenko

New form factor components of two relativistic with equal masses fermions bound state in the case of a vector current are obtained. Consideration is performed within the framework of the relativistic quasipotential approach on the basis of covariant Hamiltonian formulation of quantum field theory by transition to three-dimensional relativistic configurational representation in the case of two relativistic particles with equal masses and spin 1/2.


Sign in / Sign up

Export Citation Format

Share Document