Higher order necessary conditions for an abstract optimization problem

Author(s):  
Bernhard Gollan
Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 372
Author(s):  
Liu He ◽  
Qi-Lin Wang ◽  
Ching-Feng Wen ◽  
Xiao-Yan Zhang ◽  
Xiao-Bing Li

In this paper, we introduce the notion of higher-order weak adjacent epiderivative for a set-valued map without lower-order approximating directions and obtain existence theorem and some properties of the epiderivative. Then by virtue of the epiderivative and Benson proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued optimization problem and obtain the corresponding weak duality, strong duality and converse duality theorems, respectively.


2013 ◽  
Vol 21 (3) ◽  
pp. 181-196 ◽  
Author(s):  
Diana Rodica Merlusca

Abstract Based on a duality property, we solve the obstacle problem on Sobolev spaces of higher order. We have considered a new type of approximate problem and with the help of the duality we reduce it to a quadratic optimization problem, which can be solved much easier.


Filomat ◽  
2017 ◽  
Vol 31 (3) ◽  
pp. 671-680 ◽  
Author(s):  
Mehrdad Ghaznavi

Approximate problems that scalarize and approximate a given multiobjective optimization problem (MOP) became an important and interesting area of research, given that, in general, are simpler and have weaker existence requirements than the original problem. Recently, necessary conditions for approximation of several types of efficiency for MOPs have been obtained through the use of an alternative theorem. In this paper, we use these results in order to extend them to sufficient conditions for approximate quasi (weak, proper) efficiency. For this, we use two scalarization techniques of Tchebycheff type. All the provided results are established without convexity assumptions.


2021 ◽  
Vol 71 (1) ◽  
pp. 129-146
Author(s):  
Chittaranjan Behera ◽  
Radhanath Rath ◽  
Prayag Prasad Mishra

Abstract In this article we obtain sufficient conditions for the oscillation of all solutions of the higher-order delay difference equation Δ m ( y n − ∑ j = 1 k p n j y n − m j ) + v n G ( y σ ( n ) ) − u n H ( y α ( n ) ) = f n , $$\begin{array}{} \displaystyle \Delta^{m}\big(y_n-\sum_{j=1}^k p_n^j y_{n-m_j}\big) + v_nG(y_{\sigma(n)})-u_nH(y_{\alpha(n)})=f_n\,, \end{array}$$ where m is a positive integer and Δ xn = x n+1 − xn . Also we obtain necessary conditions for a particular case of the above equation. We illustrate our results with examples for which it seems no result in the literature can be applied.


Sign in / Sign up

Export Citation Format

Share Document